# History file 'hes-inv.h' for smoothing of model HESS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Dimension of array RAM in include file 'ram.inc' should be # MRAM=14000000 or greater for this history file. # # Preparing data to be inverted # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Input files required chk.pl: "data/hes/" "hes-mod1.dat" chk.pl: "data/hes/" "hes-mod2.dat" chk.pl: "data/hes/" "hess.dat" chk.pl: "model/" "sob22.dat" chk.pl: "forms/" "inv.cal" chk.pl: "forms/" "eq.cal" chk.pl: "forms/" "mul.cal" chk.pl: "forms/" "add.cal" # Original model MODEL='hess.dat' # Gridding interfaces N1=64 N2=1 D1=200 D2=1 O1=9800 O2=0 VEL='hes-s1.out' ISRF=1 MPAR=0 ICB=' ' grid: VEL='hes-s2.out' ISRF=2 MPAR=0 ICB=' ' grid: # Gridding P wave velocities N1=202 N2=106 D1=200 D2=200 O1=0 O2=0 VEL='hess-vp.out' ISRF=0 MPAR=1 ICB='hes-ib.out' grid: # Computing P wave slowness CAL='inv.cal' GRD1='hess-vp.out' GRD2='hes-up.out' grdcal: # Average P wave slowness (harmonic average) N1NEW=1 N2NEW=1 D1NEW=1 D2NEW=1 O1NEW=0 O2NEW=0 GNORM=0 GRD='hes-up.out' GRDNEW='hes-avup.out' grdnorm: # Gridding background P wave velocities (velocities in complex block 2) # and slownesses VEL='hes-vpb.out' ISRF=0 MPAR=1 ICB= ICBEXT=2 grid: VEL= ISRF= MPAR= ICB= ICBEXT= CAL='inv.cal' GRD1='hes-vpb.out' GRD2='hes-upb.out' grdcal: # Average P wave velocity of the background (harmonic average) N1NEW=1 N2NEW=1 D1NEW=1 D2NEW=1 O1NEW=0 O2NEW=0 GNORM=0 GRD='hes-vpb.out' GRDNEW='hes-avvp.out' grdnorm: # Average velocity on a coarse grid N1=202 N2=106 D1=200 D2=200 O1=0 O2=0 N1NEW=67 N2NEW=106 D1NEW=600 D2NEW=200 O1NEW=200 O2NEW=0 GNORM=1 GRD='hes-vpb.out' GRDNEW='hes-vpc.tmp' grdnorm: N1=67 N2=106 D1=600 D2=200 O1=200 O2=0 VEL=' ' ISRF=0 MPAR=1 ICB='hes-ibb.out' ICBEXT=2 grid: VEL=' ' ISRF=0 MPAR=1 ICB='hes-ibs.out' ICBEXT=1 grid: VEL=' ' ISRF=0 MPAR=1 ICB='hes-ibc.out' ICBEXT= grid: VEL= ISRF= MPAR= ICB= ICBEXT= CAL='eq.cal' GRD1='hes-ibc.out' GRD2='hes-ibb.out' GRD3='hes-i.tmp' grdcal: CAL='mul.cal' GRD1='hes-vpc.tmp' GRD2='hes-i.tmp' GRD3='hes-v1.tmp' grdcal: VEL='hes-vpc.tmp' ISRF=0 MPAR=1 ICB='hes-ibc.out' grid: CAL='eq.cal' GRD1='hes-ibc.out' GRD2='hes-ibs.out' GRD3='hes-i.tmp' grdcal: CAL='mul.cal' GRD1='hes-vpc.tmp' GRD2='hes-i.tmp' GRD3='hes-v2.tmp' grdcal: CAL='add.cal' GRD1='hes-v1.tmp' GRD2='hes-v2.tmp' GRD3='hes-vpc.out' grdcal: # Inversion with smothing of surfaces and of the velocities # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initial and updated models # MODEL='hes-mod1.dat' MODEL='hes-mod2.dat' MODOUT='hes-mod.out' # Form of the files with matrices FORMM='unformatted' MATFORM='unformatted' # Calculating matrices for inversion (without densities) M1='m1.out' M2='m2.out' MODL2=' ' MODSOB='modsobs.out' SOBOLEV='sob22.dat' SOBW00=1 # minimizing interface curvature invsoft: MODL2=' ' MODSOB=' ' SOBW00= MODL2=' ' MODSOB='modsobv.out' SOBOLEV='sob22.dat' SOBW01=1 # minimizing second velocity derivatives invsoft: MODL2=' ' MODSOB=' ' SOBW01= GM1='gm1.out' GM2='gm2.out' GM3=' ' DM1='dm1.out' N1=64 N2=1 D1=200 D2=1 O1=9800 O2=0 GRD='hes-s1.out' INDFUN=1 MPAR=0 ERRMUL=14.18 # SQRT(201) invpts: M2IN='m2.out' GRD='hes-s2.out' INDFUN=2 MPAR=0 ERRMUL=14.18 # SQRT(201) invpts: N1=202 N2=106 D1=200 D2=200 O1=0 O2=0 # hes-mod1.out N1=67 N2=106 D1=600 D2=200 O1=200 O2=0 # hes-mod2.out GRD='hes-vp.out' GRDICB='hes-ib.out' MPAR=1 ERRMUL=146.33 #SQRT(21412) GRD='hes-vpc.out' GRDICB='hes-ibc.out' MPAR=1 ERRMUL=84.27 #SQRT(7102) invpts: GRD=' ' M2IN=' ' GRDICB= # Matrix operations MATIN1='dm1.out' MATOUT='dm2.out' MATFUN='inv' matfun: MATIN1='dm2.out' MATIN2='gm1.out' MATOUT='dm2gm1.out' SYMMETRY= MATT1= MATT2=1 matmul: MATIN1='gm1.out' MATIN2='dm2gm1.out' MATOUT='sm1.out' SYMMETRY='sym' MATT1= MATT2= matmul: # Minimizing interface curvature MATIN1='sm1.out' MATIN2='modsobs.out' MATOUT='sm2a.out' COEF1= COEF2=6250000 matlin: # Minimizing second derivatives of P wave velocities MATIN1='sm2a.out' MATIN2='modsobv.out' MATOUT='sm2.out' COEF1= COEF2=625000000 matlin: MATIN1='sm2.out' MATOUT='sm3.out' matinv: MATIN1='dm2.out' MATIN2='gm2.out' MATOUT='gm3.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='gm1.out' MATIN2='gm3.out' MATOUT='gm4.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='sm3.out' MATIN2='gm4.out' MATOUT='gm5.out' SYMMETRY=' ' MATT1= MATT2= matmul: # Updating the model M1='m1.out' MODNEW='gm5.out' modmod: # Calculating components of the residual objective function # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Sobolev norm 'hes-sn1.out' of the surfaces curvature in the updated model #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MATIN1='modsobs.out' MATIN2='gm5.out' MATOUT='gm6.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='gm5.out' MATIN2='gm6.out' MATOUT='gm7.out' SYMMETRY='diag' MATT1=1 MATT2=0 matmul: MATIN1='gm7.out' MATOUT='hes-sn1.out' SPARSE=-1 MATFUN='sqrt' MATFORM='formatted' matfun: MATFORM='unformatted' # Sobolev norm 'hes-vn1.out' of the velocity in the updated model #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MATIN1='modsobv.out' MATIN2='gm5.out' MATOUT='gm60.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='gm5.out' MATIN2='gm60.out' MATOUT='gm70.out' SYMMETRY='diag' MATT1=1 MATT2=0 matmul: MATIN1='gm70.out' MATOUT='hes-vn1.out' SPARSE=-1 MATFUN='sqrt' MATFORM='formatted' matfun: MATFORM='unformatted' # Standard velocity deviation 'hes-vd1.out' of the updated model # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ M1='m1.out' M2='m2.out' M3= GM1='gm1.out' GM2='gm2.out' GM3=' ' DM1='dm1.out' N1=202 N2=106 D1=200 D2=200 O1=0 O2=0 # hes-mod1.out N1=67 N2=106 D1=600 D2=200 O1=200 O2=0 # hes-mod2.out GRD='hes-vp.out' GRDICB='hes-ib.out' MPAR=1 ERRMUL=146.33 #SQRT(21412) GRD='hes-vpc.out' GRDICB='hes-ibc.out' MPAR=1 ERRMUL=84.27 #SQRT(7102) invpts: GRD=' ' GRDICB= MATIN1='gm1.out' MATIN2='gm5.out' MATOUT='gm8.out' SYMMETRY= MATT1=1 MATT2= matmul: MATIN1='gm2.out' MATIN2='gm8.out' MATOUT='gm9.out' COEF1= COEF2=-1 matlin: MATIN1='dm1.out' MATOUT='dm2.out' MATFUN='inv' matfun: MATIN1='dm2.out' MATIN2='gm9.out' MATOUT='dm2gm9.out' SYMMETRY= MATT1= MATT2= matmul: MATIN1='gm9.out' MATIN2='dm2gm9.out' MATOUT='gm0.out' SYMMETRY='diag' MATT1=1 MATT2= matmul: MATIN1='gm0.out' MATOUT='hes-vd1.out' SPARSE=-1 MATFUN='sqrt' MATFORM='formatted' matfun: MATFORM='unformatted' # # Standard surface deviation 'hes-sd1.out' of the updated model # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ M1='m1.out' M2='m2.out' M3= GM1='gm1.out' GM2='gm2.out' GM3=' ' DM1='dm1.out' N1=64 N2=1 D1=200 D2=1 O1=9800 O2=0 GRD='hes-s1.out' INDFUN=1 MPAR=0 ERRMUL=11.314 # SQRT(128) invpts: M2IN='m2.out' GRD='hes-s2.out' INDFUN=2 MPAR=0 ERRMUL=11.314 # SQRT(128) invpts: GRD=' ' M2IN= MATIN1='gm1.out' MATIN2='gm5.out' MATOUT='gm8.out' SYMMETRY= MATT1=1 MATT2= matmul: MATIN1='gm2.out' MATIN2='gm8.out' MATOUT='gm9.out' COEF1= COEF2=-1 matlin: MATIN1='dm1.out' MATOUT='dm2.out' MATFUN='inv' matfun: MATIN1='dm2.out' MATIN2='gm9.out' MATOUT='dm2gm9.out' SYMMETRY= MATT1= MATT2= matmul: MATIN1='gm9.out' MATIN2='dm2gm9.out' MATOUT='gm0.out' SYMMETRY='diag' MATT1=1 MATT2= matmul: MATIN1='gm0.out' MATOUT='hes-sd1.out' SPARSE=-1 MATFUN='sqrt' MATFORM='formatted' matfun: MATFORM='unformatted' # Important output files # ~~~~~~~~~~~~~~~~~~~~~~ # 'hess-vp.out'... Gridded velocity being fit. # 'hes-s1.out'... Gridded first surface being fit. # 'hes-s2.out'... Gridded second surface being fit. # 'hes-mod.out'... Smoothed model. # 'hes-vd1.ou@'... Standard velocity deviation of the model. # 'hes-sd1.ou@'... Standard surfaces deviation of the model. # 'hes-vn1.ou@'... Sobolev norm of the velocity in the model. # 'hes-sn1.ou@'... Sobolev norm of the interfaces in the model.