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Summary

In this paper, we find an uniaxial bianisotropic electromagnetic medium with a split
intersection slowness–surface singularity.
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1. Introduction

Bulant & Klimeš (2014) and Klimeš & Bulant (2014b) demonstrated using an elastic
example that the anisotropic–ray–theory rays are not applicable in the vicinity of a split
intersection slowness–surface singularity, and that we cannot use the anisotropic ray
theory there.

We need the coupling ray theory proposed, e.g., by Kravtsov (1968), Naida (1977,
1979) or Fuki, Kravtsov & Naida (1998) for electromagnetic waves, and by Coates &
Chapman (1990) for elastic S waves. The frequency–dependent coupling ray theory
is the generalization of both the zero–order isotropic and anisotropic ray theories and
provides continuous transition between them. The coupling ray theory is applicable to
coupled waves at all degrees of anisotropy, from isotropic to considerably anisotropic or
bianisotropic media. The numerical algorithm for calculating the frequency–dependent
coupling–ray–theory tensor Green function has been designed by Bulant & Klimeš
(2002).

Klimeš & Bulant (2014a) and Bulant & Klimeš (2017) demonstrated the accuracy
of the wave field calculated by the coupling ray theory in several approximately uniaxial
anisotropic elastic media with split intersection slowness–surface singularities.

The question, whether an electromagnetic medium can display a split intersection
slowness–surface singularity, thus naturally emerged.

In this paper, we demonstrate that an uniaxial bianisotropic electromagnetic
medium may display split intersection slowness–surface singularities.

We assume Cartesian coordinates with the unit metric tensor. The lower–case
Greek indices take values 1, 2, 3 and 4. The lower–case Roman indices take values 1, 2
and 3. The Einstein summation over repetitive indices is used throughout the paper.
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2. Constitutive tensor

In the frequency domain, Maxwell equations (Post, 1962, eq. 6.28; 2003, eq. 26) for
4–vector potential Aα = Aα(xm, ω) with linear constitutive relations in the Boys–Post
representation without spatial dispersion but with time dispersion (Weiglhofer, 2000,
eqs. 1.12–1.13; 2003, eqs. 57–58) read

(χαjkδAδ,k),j − iω(χαj4δAδ),j − iωχα4kδAδ,k − ω2χα44δAδ − Jα = 0 , (1)

where J i = J i(xm, ω) represents the electric current density and J4 = J4(xm, ω)
represents the electric charge density. The 4×4×4×4 frequency–domain constitutive
tensor χαβγδ = χαβγδ(xm, ω) (Post, 1962, eq. 6.12; 2003, eq. 27; Hehl & Obukhov, 2003,
eq. D.1.9) is skew with respect to the first pair of indices

χαβγδ = −χβαγδ , (2)

and with respect to the second pair of indices

χαβγδ = −χαβδγ , (3)

and thus has 36 independent components. Analogously to Voigt notation in elasticity,
the constitutive tensor can be expressed as the 6×6 constitutive matrix which lines
correspond to the first pair of indices and columns to the second pair of indices.

In this paper, we consider an uniaxial bianisotropic electromagnetic medium
(Klimeš, 2017, eq. 48) with symmetry axis x3, which exhibits natural optical activity
(Post, 2003, table 3) in the x1x2 plane, but quite opposite optical activity along the x3

axis. The corresponding 4×4×4×4 constitutive tensor reads

χαβγδ =

















41 42 43 23 31 12

41 −ε 0 0 iγ 0 0

42 0 −ε 0 0 iγ 0

43 0 0 −ε 0 0 −i(3−δ)γ)

23 −iγ 0 0 µ−1 0 0

31 0 −iγ 0 0 µ−1 0

12 0 0 i(3+δ)γ 0 0 µ−1

















, (4)

where ε is the permittivity, µ−1 is the inverse permeability, γ is the chirality parameter
in the x1x2 plane, and δ is a dimensionless parameter. Since we are not interested in a
boring isotropic medium, we assume γ 6= 0 in this paper.
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3. Kelvin–Christoffel matrix and the characteristic equation

We define 3×3 Kelvin–Christoffel matrix (Klimeš, 2016, eq. 41)

Γil(pn, p4) = χiβγlpβpγ . (5)

We define functions p4 = p4(pn) as the solutions of characteristic equation (Klimeš,
2016, eq. 51)

det
[

Γad(pn, p4)
]

= 0 (6)

for given slowness vector pn. Functions p4 = p4(pn) are homogeneous functions of the
first degree with respect to slowness vector pn.

We express the dependence of the Kelvin–Christoffel matrix on p4 as (Klimeš, 2016,
eq. 56)

Γad(pn, p4) = (p4)
2Γad

0 + p4 Γad
1 (pn) + Γad

2 (pn) , (7)

where (Klimeš, 2016, eqs. 53–55)

Γad
0 = χa44d , (8)

Γad
1

(pn) =
(

χa4cd + χac4d
)

pc (9)

and
Γad

2 (pn) = χabcd pb pc . (10)

Since the slowness surface defined by characteristic equation (6) with constitutive tensor
(4) is rotationally invariant with respect to the p3 axis, we shall study it in the p1p3

plane. Hereinafter, we thus put
p2 = 0 . (11)

With constitutive tensor (4), matrices (8)–(10) read

Γad
0 = ε





1 0 0
0 1 0
0 0 1



 , (12)

Γad
1 (pn) = iγ





0 2p3 0
−2p3 0 −(2 + δ)p1

0 (2 − δ)p1 0



 (13)

and

Γad
2 (pn) = µ−1





−p2

3
0 p1p3

0 −p2
1 − p2

3 0
p1p3 0 −p2

1



 . (14)

We define the matrices (Klimeš, 2016, eq. 57)

Γ• ai = 1

2
εabc εijk Γbj

•
Γck
•

(15)

of cofactors of given 3×3 matrices Γij
• , where • = 0, 1, 2.

Inserting matrices (12)–(14) into definition (15), we obtain the matrices of cofactors

Γ0ad = ε2





1 0 0
0 1 0
0 0 1



 , (16)

Γ1ad(pn) = −γ2





(4−δ2)p2

1
0 −2(2 − δ)p1p3

0 0 0
−2(2 + δ)p1p3 0 4p2

3



 (17)
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and

Γ2ad(pn) = (µ−1)2(p2

1 + p2

3)





p2

1
0 p1p3

0 0 0
p1p3 0 p2

3



 . (18)

The determinant (Klimeš, 2016, eq. 52)

det
[

Γad(pn, p4)
]

= 1

6
εabcεijkΓai(pn, p4)Γ

bj(pn, p4)Γ
ck(pn, p4) (19)

of 3×3 Kelvin–Christoffel matrix (7) reads (Klimeš, 2016, eq. 58)

det
[

Γad(pn, p4)
]

= (p4)
6Γ0 + (p4)

5Γ1(pn) + (p4)
4Γ2(pn)

+ (p4)
3Γ3(pn) + (p4)

2Γ4(pn) + p4 Γ5(pn) + Γ6(pn) , (20)

with coefficients (Klimeš, 2016, eqs. 59–65)

Γ0 = det
(

Γad
0

)

, (21)

Γ1 = Γ0 rsΓ
rs
1

, (22)

Γ2 = Γrs
0

Γ1 rs + Γ0 rsΓ
rs
2

, (23)

Γ3 = εabcεijkΓai
0

Γbj
1

Γck
2

+ det
(

Γad
1

)

, (24)

Γ4 = Γrs
0

Γ2 rs + Γ1 rsΓ
rs
2

, (25)

Γ5 = Γrs
1

Γ2 rs (26)

and
Γ6 = det

(

Γad
2

)

. (27)

Since (Klimeš, 2016, eq. 69)
Γ5 = 0 (28)

and (Klimeš, 2016, eq. 70)
Γ6 = 0 , (29)

the characteristic equation (6) reduces to fourth–order polynomial equation (Klimeš,
2016, eq. 71)

(p4)
4Γ0 + (p4)

3Γ1(pn) + (p4)
2Γ2(pn) + p4 Γ3(pn) + Γ4(pn) = 0 (30)

for p4.
Coefficient (21) with matrix (12) reads

Γ0 = ε3 . (31)

Coefficient (22) with matrices (13) and (16) reads

Γ1 = 0 . (32)

Coefficient (23) with matrices (12), (14), (16) and (17) reads

Γ2 = −εγ2[(4−δ2)p2

1
+ 4p2

3
] − 2ε2µ−1(p2

1
+ p2

3
) . (33)

We sort the terms with p2

1
and p2

3
,

Γ2 = −ε
[

(4−δ2)γ2p2

1 + 2εµ−1
]

p2

1 − ε
[

4γ2 + 2εµ−1
]

p2

3 . (34)

Coefficient (24) with matrices (12)–(14) reads

Γ3 = 0 . (35)
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Coefficient (25) with matrices (12), (14), (17) and (18) reads

Γ4 = ε(µ−1)2(p2

1 + p2

3)
2 + µ−1γ2(16−δ2)p2

1p
2

3 . (36)

Since Γ1 = 0 and Γ3 = 0, polynomial equation (30) for p4 reads

(p4)
4Γ0 + (p4)

2Γ2(pn) + Γ4(pn) = 0 . (37)

It has four solutions. Two solutions with negative real parts read

p4 = −

√

−
1

2

Γ2

Γ0

±
1

2Γ0

√

(Γ2)2 − 4Γ0Γ4 . (38)

Since these two solutions must equal −1 (Klimeš, 2016, eqs. 74),

p4(pn) = −1 , (39)

we obtain two equations

Γ0 = −1

2
Γ2(pn) ± 1

2

√

[Γ2(pn)]2 − 4Γ0 Γ4(pn) (40)

for p1 and p3 describing two sheets of the slowness surface.
Coefficient Γ2 is a linear function of p2

1
and p2

3
. Discriminant (Γ2)

2 − 4Γ0Γ4 is a
quadratic function of p2

1 and p2

3. We express it as

Γ2

2 − 4Γ0Γ4 = Ap4

1 − 2Bp2

1p
2

3 + Cp4

3 , (41)

and calculate coefficients A, B and C using relations (31), (34) and (36):

A = ε2
[

(4−δ2)γ2 + 2εµ−1
]2

− 4ε4(µ−1)2 , (42)

A = ε2γ2(4−δ2)
[

(4−δ2)γ2 + 4εµ−1
]

, (43)

B = −ε2[(4−δ2)γ2 + 2εµ−1][4γ2 + 2εµ−1] + 2ε3µ−1[2εµ−1 + (16−δ2)γ2] , (44)

B = 4ε2γ2
[

− (4−δ2)γ2 + 4εµ−1
]

, (45)

C = ε2[4γ2 + 2εµ−1]2 − 4ε4(µ−1)2 , (46)

C = 16ε2γ2(γ2 + εµ−1) . (47)

We look for the intersection singularity where
√

(Γ2)2 − 4Γ0Γ4 is a linear function of p2

1

and p2

3
. This may happen only if

B2 − AC = 0 . (48)

We thus calculate expression

B2−AC = 16ε4γ4

{

[

(4−δ2)γ2−4εµ−1
]2
−(4−δ2)

[

(4−δ2)γ2+4εµ−1
][

γ2+εµ−1
]

}

, (49)

which may be simplified to

B2 − AC = 16ε5µ−1γ4

{

− (4−δ2)(16 − δ2)γ2 + 4δ2εµ−1

}

. (50)

Considering condition (48) with expression (50), we obtain quadratic equation

δ4γ2 − δ2 4(εµ−1 − 5γ2) + 64γ2 = 0 (51)

for δ2 with a small coefficient at δ4, which means that one root δ2 is small and other
root δ2 is large. The smaller one of two roots of this quadratic equation reads

δ2 =
32γ2

εµ−1 − 5γ2 +
√

(εµ−1 − 5γ2)2 − 16γ4
, (52)
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i.e.,

δ = ±4

√

2γ2

εµ−1 − 5γ2 +
√

(εµ−1 − 5γ2)2 − 16γ4
, (53)

which may be, for small γ2 in comparison with εµ−1, approximated by

δ ≈ ±4

√

γ2

εµ−1 − 5γ2
. (54)

For δ given by (53),
√

(Γ2(pn))2 − 4Γ0(pn)Γ4(pn) is a linear function of p2

1
and p2

3
, and

two equations (40) specify two rotationally invariant ellipsoids intersecting at two line
intersection singularities. For δ between values (53), discriminant (41) is always positive
and the slower slowness sheet separates from the faster slowness sheet, forming smooth
but very sharp edges on both sheets. The behaviour of the slowness surface becomes
complex outside the interval given by values (53).

4. Conclusions

For small dimensionless parameter δ given by relation (53), the slowness surface of a
medium with constitutive tensor (4) is composed of two rotationally invariant ellipsoids
intersecting at two line intersection singularities. For other values of parameter δ, e.g.,
for δ = 0, the intersection singularity is split and the slower slowness sheet separates
from the faster slowness sheet, forming smooth but very sharp edges on both sheets.

When the slowness vector of a ray smoothly passes through a split intersection
singularity, the ray–velocity vector rapidly changes its direction and creates a sharp
bend on the ray, see Klimeš & Bulant (2014b, figs. 1–4). This sharp bend is connected
with a rapid rotation of the eigenvectors of the Kelvin–Christoffel matrix. The sharply
bent rays thus cannot describe the correct wave propagation and indicate a failure of
the anisotropic ray theory. The actual electromagnetic waves do not propagate along
the sharply bent rays, but tunnel smoothly through a split intersection singularity.

In the vicinity of a split intersection singularity where the anisotropic ray theory
fails, electromagnetic waves can be calculated by means of the coupling ray theory
(Kravtsov, 1968; Naida, 1977; 1979; Fuki, Kravtsov & Naida, 1998; Bulant & Klimeš;
2002; Klimeš & Bulant, 2016). However, the coupling ray theory cannot be applied
to the sharply bent anisotropic–ray–theory reference rays in this case. It has to be
applied to the anisotropic common reference rays (Klimeš, 2016), or to some other more
accurate reference rays.
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Klimeš, L. & Bulant, P. (2016): Prevailing–frequency approximation of the coupling
ray theory for electromagnetic waves or elastic S waves. Stud. geophys. geod., 60,
419–450.

Kravtsov, Yu.A. (1968): “Quasiisotropic” approximation to geometrical optics. Dokl.
Acad. Nauk SSSR, 183, 74–76, in Russian, English translation: Sov. Phys. —
Doklady, 13(1969), 1125–1127.

Naida, O.N. (1977): Uniform geometrical–optics approximation of linear systems along
rays of variable multiplicity. Radiophys. Quantum Electron., 20, 261–271.

Naida, O.N. (1979): The geometric optics of three–dimensional inhomogeneous aniso-
tropic media. Radio Engng. electron. Phys., 23, 8–15.

Post, E.J. (1962): Formal Structure of Electromagnetics. General Covariance and
Electromagnetics. North–Holland Publ. Co., Amsterdam.

Post, E.J. (2003): Separating field and constitutive equations in electromagnetic theory.
In: Weiglhofer, W.S., Lakhtakia, A. (eds.): Introduction to Complex Mediums for
Optics and Electromagnetics, pp. 3–25, SPIE Press, Bellingham.

Weiglhofer, W.S. (2000): Scalar Hertz potentials for linear bianisotropic mediums. In:
Singh, O.N. & Lakhtakia, A. (eds.): Electromagnetic Fields in Unconventional
Materials and Structures, pp. 1–37, John Wiley & Sons, New York.

Weiglhofer, W.S. (2003): Constitutive characterization of simple and complex mediums.
In: Weiglhofer, W.S., Lakhtakia, A. (eds.): Introduction to Complex Mediums for
Optics and Electromagnetics, pp. 3–25, SPIE Press, Bellingham.

125


