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Summary

We determine the general form of the rotationally invariant constitutive tensor of a
bianisotropic medium. In the coordinate system attached to the symmetry axis, the
rotationally invariant constitutive tensor is described by twelve parameters. It is thus
described by four additional parameters in comparison with an uniaxial constitutive
tensor.
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1. Introduction

In this paper, we determine the general form of the rotationally invariant constitutive
tensor of a bianisotropic medium. We suppose that a bianisotropic medium is invariant
with respect to the rotation about a given symmetry axis. We calculate the derivative
of the constitutive tensor with respect to the angle of rotation in Section 3. We put
the derivative equal to zero, and obtain the system of equations for the elements of the
constitutive tensor.

We express and solve these equations in the coordinate system attached to the
symmetry axis in Section 4. We then determine the general form of a rotationally
invariant constitutive tensor in general coordinates in Section 5.

We assume Cartesian coordinates with the unit metric tensor. The lower—case
Roman indices take values 1, 2 and 3. The lower—case Greek indices take values 1, 2, 3
and 4. The Einstein summation over repetitive indices is used throughout the paper.

2. Frequency—domain constitutive relations

We assume the constitutive relations in the Boys—Post representation which express the
dependence of the electric displacement D7 and magnetic field strength H; on electric
field strength E; and magnetic induction B7. In this paper, we consider just the linear
constitutive relations in the Boys—Post representation.

The linear point constitutive relations without spatial dispersion but with possible
time dispersion can be expressed in the frequency domain as (Weiglhofer, 2000, eq. 1.12;
2003, eq. 57)

Di — gijEj + aiij , (1)
and (Weiglhofer, 2000, eq. 1.13, 2003, eq. 58)
Hy =8, E;+p;' B (2)
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Electric field strength F;, magnetic induction BJ, electric displacement D7, magnetic
field strength Hj, permittivity tensor e, inverse permeability tensor ,ui_jl, and mag-
netoelectric tensors «'; and B;” may depend on spatial coordinates ™ and circular
frequency w.

We define constitutive tensor x*#7° (Post, 1962, eq. 6.12; 2003, eq. 27; Hehl &
Obukhov, 2003, eq. D.1.9) by relations

I = i i i g (3)
XAk = ikt _ igrg ko (4)
Ve L (5)
and
Xijk:l — 5ijT/1/r_5155kl ) (6)
The constitutive tensor is skew with respect to its first pair of superscripts,
X0 = et (7)
and its last pair of superscripts,
XM = —xr (8)

and thus has 36 independent components. Analogously to Voigt notation in elasticity,
the constitutive tensor can be expressed as the 6x6 constitutive matrix. The 36 distinct
components of the constitutive tensor read

41 42 43 23 31 12
a [ —ell g2 13 _all _alz _alg
ao | =21 g2 .23 —0421 —a22 —a23
31 32 33 3 3 3
aﬁ ) o 43 —& —& —& — 1 — 2 — 3
X 0= ) (9)

23 ﬁli ﬁlz ﬁli N£1i Nizi l‘i?,i
31 521 522 523 ,U2_11 N2_21 N2_31
12 Bs B3 B3 31 3o K33

see Post (1962, eq. 6.21). Constitutive relations (1) and (2) then can be expressed as

41 42 43 23 31 12
_Dl 41 X4141 X4142 X4143 X4123 X4131 X4112 El
_D2 49 X4241 X4242 X4243 X4223 X4231 X4212 E2
_D3 43 X4341 X4342 X4343 X4323 X4331 X4312 E3 (10)
Hl - 23 X2341 X2342 X2343 X2323 X2331 X2312 Bl ’
H2 31 X3141 X3142 X3143 X3123 X3131 X3112 B2
H3 12 X1241 X1242 X1243 X1223 X1231 X1212 B3

see Post (1962, eq. 6.21).
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3. Derivative of the constitutive tensor with respect to the angle of rotation

Transformation matrix R, (¢, t,) corresponding to the rotation of vectors about a given
unit vector t, by angle ¢ is an orthogonal matrix, with R;,(0,t,) = 0;,, where Kronecker
delta ¢;, represents the elements of the identity matrix, see Klimes (2016, eq. 4). The
derivative of the transformation matrix at ¢ = 0 reads

dR;,
dy

(0,ta) = —=Sin (11)

where
Sin — ginrtr (12)
(Klimes, 2016, eq. 3). Here ¢;;;, is the Levi-Civita symbol.
The rotated parts of the constitutive tensor read
X (@, ta) = Ryglp, ty) Rus(ip, ta) X9,

(13)
X (@, ta) = Rip(0,ta) Riq(, 1) Ris(ip,ta) X114 (14)
X4jkl(§07t ) = Rjq(p, tp) Rir (i, tc) Ris(p, ta) X ars (15)

Xijkl(%ta) = Rip(p, ta) Rjq(p, o) Rir (@, tc) Ris(ip,ta) X7, (16)

where Y%7 without arguments is the non-rotated constitutive tensor. Rotated
constitutive tensor x*?7%(y, t,) obviously satisfies relations (7)—(8) and can be expressed

in the form of the 6x6 constitutive matrix.
. . apy . . .
The derivative dXd (0,t,) of constitutive tensor x*?7°(y,t,) with respect to

the angle ¢ of rotation at ¢ = 0 follows directly from transformation (13)—(16) with
derivative (11),

dﬁfl (0,ta) = =Sjnx "™ = Spx ", (17)

df:u (0,t2) = — Sy — 8™l — Gy it (18)
dﬁf’ (0, ta) = =SjnX"™ = Spux ¥ = Sy (19)
di(il;kl (0,ta) = =Sinx™* = Sux™ = Spax 7" = Spx " (20)

The derivative X 17 (0 t,) of constitutive tensor y*#7°(y,t,) obviously satisfies rela-
tions (7)—(8) and can be expressed in the form of the 6 x 6 matrix, analogously to the
constitutive matm)é{

We put X (0,t,) = 0, and obtain the system of equations

Sjnx4n4l + SlnX4j4n -0 ( )

S 4 8™ 4 Spx T =0 (22)
S ™ 4 S Sy = 0 (23)
SinX™F + Sin X ™+ SpnX ™ + S XF =0, (24)

for the rotationally invariant non—symmetric constitutive tensor.
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4. Coordinate system attached to the symmetry axis

We choose the coordinate system which third coordinate axis coincides with the
symmetry axis. In this coordinate system, the symmetry vector reads

te =(0,0,1) . (25)
Matrix (12) then takes form
0 1 0
Sa=1-1 0 0 (26)
0 0 0
The individual addends on the right-hand side of equation (21) then read
41 42 43
g [ 24 242 4243
Sp ik — o [ e a2 4143 (27)
43 0 0 0
41 42 43
| “ 4142 4141
Sknx4z4n = 49 X4242 _X4241 0 , (28)
g3 \ 2342 434

and equation (21) reads

VA2 201 202 414l 4243
VA2 Al a2 241 43 | g (29)
4342 B 0
We see that
X4143 —0 X4243 —0 | X4341 —0 | X4342 —0 |
X4242 _ X4141 7 X4241 _ _X4142 . (30)
The individual addends on the right—hand side of equation (22) read
41 42 43
| 0y 34T yB142 3143
SinX™* = 3 0 0 0 ; (31)
12 0 0 0
41 42 43
' 93 0 0 0
Sjnxml — o | B 232 2343 ’ (32)
12 0 0 0
41 42 43
y - 2842 2341
Slnxw n o_ 31 3142 _X3141 0 , (33)
o \ 1242 12 g
and equation (22) reads
(2342 4 (3141 (3142 2341 3143
VP2 2341 2342 (3141 2343 | _ (34)
Y1242 EEZ 0
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We see that

BB M= 2= Y
N Sl 2342
The individual addends on the right-hand side of equation (23) read
23 31 12
g [ 1223 A a2
SinX I = 4y | —xA128 4181 _y4112 ’
43 0 0 0
23 31 12
a0 0
SenX M = a2 | XM 00|
43 X4331 0 0
23 31 12
a0 —y12
Sy = ol 0 =122 :
3 L0 4323

and equation (23) reads

Y1223 4\ 4181 (4231 4123 4212
YA231 4123 4131442234112 | g
4331 1323 0
We see that
iz =g 2 —o BB X
il — 4128 1228 — 4181
The individual addends on the right—hand side of equation (24) read
23 31 12
| 0z [ 123 3131 3112
Sinxn]kl = 31 0 0 0 y
12 0 0 0
23 31 12
‘ 23 0 0 0
Sinx™Hl = g | —x2328 2381 _, 2312 :
12 0 0 0
23 31 12
- 23 2331 0 0
SknX?™ =31 | x*3 0 0 :
19 X1231 0 0
23 31 12
B 23 0 _X2323 0
SinX =5 0 =312 0 ;
12 0 _X1223 0
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4331 _ 0

Y

Y

(35)
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and equation (24) reads

X3123 + X2331 X3131 . X2323 X3112
X3131 1_2 )162323 _X2331 1;2X3123 _X2312 -0 . (45)
X 3 —X 3 0
We see that
X2312 —0 X3112 —0 X1223 —0 X1231 —0
X3131 _ X2323 ’ X3123 _ _X2331 ' (46)

Considering conditions (30), (35), (40) and (46), we observe that constitutive matrix
(9) which is rotationally invariant about symmetry vector ¢, = (0,0, 1) takes form

41 42 43 23 31 12
41 —e £ 0 —Q — 0
42 g —& 0 6" — 0
Xa5’75 _ 43 0 Q _<6 + é) 91 v(—]l —(Oé + d) (47)
2w | B B 0 % f 0
s1| -6 0B 0 —pt pt 0
2\0 0 p[g+p 0 0 pt+pt

specified by 12 parameters.
Constitutive matrix (47) may be non—-symmetric. For example, for natural optical
activity # # —a (Post, 2003, table 3), and for Faraday effect £ # 0 (Post, 2003, table 4).

A rotationally invariant medium is referred to as uniaxial if € =0, a =0, =10

and ji~' = 0. The constitutive matrix (47) then reads

41 42 43 23 31 12

s [—€ 0 0 —a 0 0

492 0 —& 0 0 —Q 0

a 4 0 0 —(e+¢ O 0 —(a+a
X Bvs _ 2§ g 0 ( 0 ) u—l 0 ( 0 ) (48)
31 0 I} 0 0 ,u_l 0
2\ 0 0 B+p 0 0 pt+pt

The constitutive matrix of an uniaxial bianisotropic electromagnetic medium may be
non-symmetric, whereas the stiffness matrix of an uniaxial (transversely isotropic)
viscoelastic medium is symmetric.

A biisotropic medium is invariant with respect to rotations about all three co-
ordinate axes. If we imagine the constitutive matrices analogous to matrix (47) but
corresponding to symmetry vectors t, = (1,0,0) and ¢, = (0,1,0), we immediately see
that the constitutive matrix of a biisotropic medium reads

41 42 43 23 31 12

41 —& 0 0 — 0 0

42 0 —& 0 0 — 0

afB~s 43 0 0 —& 0 0 —Q
X P8 = 93 ﬁ 0 0 :u_l 0 0 (49)

31 0 16} 0 0 u_l 0

2\0 0 p 0 0 p!



The constitutive matrix of a biisotropic electromagnetic medium may be non-sym-
metric, whereas the stiffness matrix of an isotropic viscoelastic medium is symmetric.
For example, a biisotropic electromagnetic medium exhibiting natural optical activity
has a non—symmetric constitutive matrix (Post, 2003, table 3).

5. General form of a rotationally invariant constitutive tensor

We transform the 3x3 submatrices of rotationally invariant constitutive matrix (47) from
the coordinate system attached to the symmetry axis to a general coordinate system,
and obtain the general forms of rotationally invariant 3 x 3 submatrices of constitutive
matrix (9),

eV =¢ 0ij +Etitj +Ecijrty (50)
B, = Bdij + Btit; + Beijety (51)
a/ij =« 513' + « titj + &5ijrtr s (52)
it = i O i bty gt (53)

where Kronecker delta d;; represents the elements of the identity matrix and g
represents the Levi-Civita symbol.
We insert relations (50)—(53) into definitions (3)—(6) and arrive at

XY = ey — Etit) — Ecjit, (54)
X = Besi + Beijety ti+ 5 (Suty — tid) (55)
X = —aej — @ty epnte — & (St — tid) (56)
(57)

XM = T (Sikbj1 — Sudn) + B €ijrtrerists + 1 EijrErsnshitn
We may also express the last term of relation (57) in alternative forms,

G = T (051 — Sadn) + B eijrtrerists + 1 (St — gimti) (58)

X

or
IR = i (Sinbj1 — 0udjk) + it eijrtremists + i (Eijitn — cigrty) (59)

6. Conclusions

In the coordinate system which third coordinate axis coincides with the symmetry axis,
the constitutive tensor of a rotationally invariant bianisotropic electromagnetic medium
has form (47). It is described by four additional parameters in comparison with the
constitutive tensor of an uniaxial electromagnetic medium.

In a general coordinate system, the constitutive tensor of a rotationally invariant
bianisotropic electromagnetic medium has form (54)—(57).

Whereas the stiffness tensor of an isotropic viscoelastic medium is symmetric, the
constitutive tensor of a biisotropic electromagnetic medium may be non—symmetric and
may exhibit an optical activity.
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