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Summary

We present and test an approximate formula for the reflection moveout of converted
waves in a homogeneous VTI (transversely isotropic with the vertical axis of symmetry)
layer. For its derivation, we use the weak-anisotropy approximation, i.e., we expand the
square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. Travel
times are calculated along reference rays of converted waves reflected in reference isotropic
media. This requires the determination of the point of reflection of the reference ray, at
which the corresponding wave converts. Presented tests indicate that the accuracy of
the formula is comparable with the accuracy of formulae derived in a similar way for
unconverted waves. The tests also indicate that the formula can be applied not only to
weakly, but also to moderately anisotropic VTI media.

Introduction

As in our previous papers, we are presenting reflection moveout formula based on
the combined use of the weak-anisotropy approximation and weak-anisotropy (WA) pa-
rameters. In this article, we concentrate on converted waves in a homogeneous layer of
transverse isotropy with vertical axis of symmetry (VTI). The derived approximate for-
mula holds for both P-SV and SV-P converted waves. We, however, perform the derivation
and concentrate on the converted P-SV wave only.

For the derivation of moveout formulae, Farra and Pšenč́ık (2013) or Farra, Pšenč́ık and
J́ılek (2016) used an actual ray of an unconverted P or SV wave reflected from a horizontal
reflector, which coincided with one symmetry plane of the overlying anisotropic medium.
Pšenč́ık and Farra (2016) and Farra and Pšenč́ık (2017) showed that it is possible to derive
simple and still sufficiently accurate moveout formulae even without knowledge of actual
rays, and extended their previous work to weakly anisotropic media of arbitrary symmetry
and orientation. The basic step of their procedure was the replacement of actual rays by
reference rays in reference isotropic media. For unconverted waves, the reference rays
are symmetric with respect to the reflector and, therefore, it is straightforward how to
construct them.
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In contrast to unconverted reflected waves, for which construction of a symmetric
reference ray is easy, construction of a reference ray of a converted reflected wave in
an anisotropic medium is a more complicated task. Fortunately, there were successful
attempts to find the conversion point (the point of reflection, at which the mode conversion
occurs) in the past. Probably the first were Tessmer and Behle (1988). Improved version
of their formula proposed by Thomsen (1999) is used in this paper.

Determination of the conversion point in the reference medium

We consider a homogeneous isotropic layer underlaid by a horizontal reflector. On the
surface of the layer, we consider source S and receiver R. These two points are connected
by the ray of a converted P-S wave with the conversion point C at the reflector. In
the following, we follow closely derivation by Thomsen (1999), but use slightly different
notation corresponding to the notation, which we used in our previous studies. We denote
the P- and S-wave velocities α and β, respectively. As Thomsen (1999), we denote their
ratio by γ = α/β, and angles of incidence and reflection of a ray of the converted P-S
wave by θP and θS. By x, we denote the source-receiver offset and by xC the offset of
the conversion point. The depth of the layer is denoted H. Elementary trigonometry
considerations for sin θP and sin θS yield:

sin θP =
xC√

x2
C +H2

, sin θS =
x− xC√

(x− xC)2 +H2
. (1)

Combination of the Snell law and equation (1) leads to the equation

(x− xC)
2(x2

C +H2)γ2 = x2
C [(x− xC)

2 +H2] . (2)

Equation (2) is equivalent to equation (14) of Thomsen (1999). Normalizing equation (2)
by H, introducing the normalized offset x̄ and normalized offset of the conversion point
x̄C ,

x̄ =
x

H
, x̄C =

xC

H
(3)

and rearranging equation (2) into the form of a polynomial equation, we get

x̄4
C − 2x̄x̄3

C + (1 + x̄2)x̄2
C − 2γ2x̄x̄C

γ2 − 1
+

γ2x̄2

γ2 − 1
= 0 . (4)

This is a quartic polynomial equation for the normalized offset of the conversion point
x̄C . It can be solved analytically using, for example, the so-called Ferrari procedure. It
can also be solved numerically. Tessmer and Behle (1988) derived an approximate explicit
formula for the determination of the offset of the conversion point, which was improved
by Thomsen (1999). Taking into account the normalization specified in equation (3), we
use here the approximate formula of Thomsen (1999). It reads

x̄C ∼ x̄(C0 + C2
x̄2

1 + C3x̄2
) , (5)

where

C0 =
γ

1 + γ
, C2 =

γ

2

γ − 1

(1 + γ)3
, C3 =

γ

2

γ − 1

(1 + γ)2
, (6)
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For the detailed study of accuracy of the expression (5), see Thomsen (1999).

Traveltime formula

We consider the Cartesian coordinate system, whose x1- and x2-axes are horizontal, the
x3-axis is vertical and positive downwards. The system is right-handed. As in the previous
section, we consider a homogeneous layer underlaid, at the depth H, by a horizontal
reflector. The layer is now, however, not isotropic, but transversely isotropic with the
axis of symmetry vertical (VTI). In this layer we consider a converted P-SV wave, it is
a wave, which propagates as a P wave from the source S to the conversion point C, and
as an SV wave from C to the receiver R. Without loss of generality, we can consider
the profile along the x1-axis, which means that the SV wave is polarized in the vertical
(x1, x3) plane. The traveltime along the ray of the converted wave from S to R via C is
T = TP + TSV , where TP is the traveltime along the P-wave leg of the ray and TSV along
the SV-wave ray leg. From the geometry of the ray of the converted wave, we have the
following expressions for the squares of traveltimes along the P- and SV-wave ray legs:

T 2
P =

x2
C +H2

v2P (N
P )

, T 2
SV =

(x− xC)
2 +H2

v2SV (N
SV )

. (7)

Here xC is the offset of the conversion point of the converted P-SV wave in the VTI
medium. In equation (7), vP and vSV denote P- and SV-wave ray velocities. The vectors
NP and NSV denote unit vectors parallel to the P- and SV-wave ray legs of the converted
wave. We call the vectors NP and NSV ray vectors. Before proceeding further, let us
rewrite equation (7) by using normalized quantities in it. In addition to quantities in
equation (3), we also use

T0P =
H

α
, T0SV

=
H

β
, (8)

where α and β are P- and S-wave velocities of the reference isotropic medium. Equation
(7) now reads:

T 2
P = T 2

0P
α2 1 + x̄2

C

v2P (N
P )

, T 2
SV = T 2

0SV
β21 + (x̄− x̄C)

2

v2SV (N
SV )

. (9)

If x̄C is exact, then the traveltime T = TP +TSV , where TP and TSV are given in equation
(9), is also exact. At this point, we shall make two approximations, which we did also in
our previous studies.

The first approximation is related to the fact that the actual ray of the converted wave
is unknown. As, for example, Pšenč́ık and Farra (2016) or Farra and Pšenč́ık (2017), we
replace the actual ray by the reference ray of the converted wave in the reference isotropic
medium with P- and S-wave velocities α and β. The normalized offset of the conversion
point is now considered in the reference isotropic medium. In this way, we replace the
traveltime calculated along the actual ray by its first-order approximation calculated along
a reference ray in the reference isotropic medium (Fermat’s principle). The vectors NP

and NSV are taken as vectors parallel to the P- and S-wave legs of the reference ray. We
keep the same notation for NP as in the case of an actual P-wave ray, but use NS instead
of NSV . Components of the ray vectors NP and NS are specified by the same formulae
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as those used in the above-mentioned references or Farra et al. (2016). The components
of the vector NP in the plane (x1, x3) read:

NP
1 =

x̄C√
1 + x̄2

C

, NP
2 = 0 , NP

3 =
1√

1 + x̄2
C

. (10)

The components of the vector NS in the same plane read:

NS
1 =

x̄− x̄C√
1 + (x̄− x̄C)2

, NS
2 = 0 , NS

3 = − 1√
1 + (x̄− x̄C)2

. (11)

The negative sign in the expression for NS
3 indicates upgoing character of the S-wave ray

leg.

The second approximation consists in the replacement of exact squares of ray velocities
in equation (9) by their approximations. As Pšenč́ık and Farra (2016) or Farra and Pšenč́ık
(2017), we approximate squares of ray velocities by the first-order approximations of
squares of phase velocities in the corresponding directions N. Using equations (7) and
(29) of Farra and Pšenč́ık (2013), we have, in the notation of this paper:

ṽ2P (N
P ) ∼ c̃2P (N

P ) ∼ α2[1 + 2(ϵx(N
P
1 )

4 + δy(N
P
1 )

2(NP
3 )

2 + ϵz(N
P
3 )

4)] (12)

and
ṽ2SV (N

S) ∼ c̃2SV (N
S) ∼ β2[1 + 2γy + 2γ2(ϵx + ϵz − δy)(N

S
1 )

2(NS
3 )

2] . (13)

Tilde above the quantities indicates that they are approximate, specifically of the first
order in WA parameters. Symbols cP and cSV denote P- and SV-wave phase velocities.
Symbols ϵx, ϵz, δy and γy are WA parameters defined as follows:

ϵx =
A11 − α2

2α2
, ϵz =

A33 − α2

2α2
, δy =

A13 + 2A55 − α2

α2
, γy =

A55 − β2

2β2
, (14)

where Aαβ denote density-normalized elastic moduli in the Voigt notation.

Inserting equations (10) and (11) into equations (12) and (13), we obtain approximate
expressions for squares of ray velocities expressed in terms of the normalized offset x̄.
These expressions inserted to the traveltime formulae (9) yield

T 2
P = T 2

0P

(1 + x̄2
C)

3

PP (x̄C)
, T 2

SV = T 2
0SV

[1 + (x̄− x̄C)
2]3

PSV (x− x̄C)
. (15)

Symbols PP (x) and PSV (x) represent polynomials

PP (x) = (1 + x2)2 + 2δyx
2 + 2ϵxx

4 + 2ϵz (16)

and
PSV (x) = (1 + x2)2(1 + 2γy) + 2γ2(ϵx + ϵz − δy)x

2 . (17)

For the total time T = TP + TSV , we thus get:

T (x̄) = T0P

(1 + x̄2
C)

3/2

P
1/2
P (x̄C)

+ T0SV

[1 + (x̄− x̄C)
2]3/2

P
1/2
SV (x̄− x̄C)

. (18)
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By differentiating equations (18), it is possible to obtain expressions for the normal
moveout velocity vNMO and the quartic term A4 of the Taylor expansion of the squared
traveltime T 2 with respect to the squared offset x2.

Tests of accuracy

We test equation (18) for converted P-SV waves in the limestone model, whose P- and
SV-wave anisotropy are ∼ 8% and ∼ 5%, respectively, and the Mesaverde mudshale and
the hard shale models with P-wave anisotropy ∼ 6% and ∼ 25%, respectively, and SV-
wave anisotropy of ∼ 12%. The anisotropy strength is defined as 2(cmax − cmin)/(cmax +
cmin)× 100%, where c denotes corresponding phase velocity. The parameters of all three
models are given in Table 1.

Model α(km/s) β(km/s) ǫx δy ǫz γy
Limestone 3.0 1.707 0.076 0.133 0. 0.

Mesaverde mudshale 4.53 2.703 0.034 0.184 0. 0.
Hard shale 3.0 1.914 0.252 0.034 0. 0.

Table 1: Parameters of the models used. α and β - P- and S-wave reference velocities, ϵx,
δy, ϵz and γy - WA parameters.

In the following figures, we present plots of relative errors (T −Tex)/Tex× 100%. Here
T is the traveltime calculated from equation (18) and Tex is the traveltime calculated
using the package ANRAY (Gajewski and Pšenč́ık, 1990), which we consider exact. Each
figure contains two curves obtained from equation (18). They differ by the way, in which
the conversion point is estimated. The black curve is obtained from the approximate
equation (5), the red curve is obtained by solving numerically the quartic equation (4).

In Figure 1, we show results for the weakly anisotropic limestone model. We can see
that x̄C determined by solving numerically quartic equation (4) leads to relative traveltime
errors less than 0.1% for normalized offsets from 0. to 8. The use of the normalized
conversion offset x̄C determined from the approximate equation (5) leads to slightly larger
errors, but still below 0.2% for normalized offsets between 0. and 8. Relative traveltime
errors are thus comparable with relative errors of the first-order formula for unconverted P
waves, but less than errors of the first-order formula for unconverted SV waves. Compare
Figure 1 of this paper with Figures 1 and 3 of Farra and Pšenč́ık (2013).

Figure 2 shows relative traveltime errors of equation (18) applied to Mesaverde mud-
shale model. The errors are slightly larger than in Figure 1 (S-wave anisotropy is stronger),
but they do not exceed 0.5% for the normalized offsets between 0. and 8. These errors are
substantially smaller than errors of the first-order formula for unconverted SV, compare
Figure 2 of this paper with Figure 4 of Farra and Pšenč́ık (2013).

Because of stronger anisotropy of the hard shale, relative traveltime errors of equation
(18) in Figure 3 are larger. They nearly reach 2% around the normalized offset x̄ ∼ 2. For
the remaining offsets, the errors are smaller. In this case, the accuracy of equation (18) is
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is even higher than the accuracy of the first-order formula for unconverted SV wave, see
Figure 5 of Farra and Pšenč́ık (2013).
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Figure 1: P-SV-wave moveout in the limestone model, P-wave anisotropy ∼ 8%, SV-wave
anisotropy ∼ 5%. Variation with the normalized offset x̄ = x/H of the relative traveltime
error of approximate equation (18). Black curve - the conversion point estimated approx-
imately from equation (5), red curve - the conversion point determined by the numerical
solution of equation (4).
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Figure 2: P-SV-wave moveout in the Mesaverde mudshale model, P-wave anisotropy ∼
6%, SV-wave anisotropy ∼ 12%. Variation with the normalized offset x̄ = x/H of of the
relative traveltime error of approximate equation (18). Black curve - the conversion point
estimated approximately from equation (5), red curve - the conversion point determined
by the numerical solution of equation (4).
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Figure 3: P-SV-wave moveout in the hard shale model, P-wave anisotropy ∼ 25%, SV-
wave anisotropy ∼ 12%. Variation with the normalized offset x̄ = x/H of of the relative
traveltime error of approximate equation (18). Black curve - the conversion point esti-
mated approximately from equation (5), red curve - the conversion point determined by
the numerical solution of equation (4).

Conclusions

We derived an approximate, explicit and relatively simple reflection-moveout formula
for a converted wave in a weakly or moderately anisotropic homogeneous VTI layer. The
formula relates, in a simple and transparent way, traveltimes to the parameters of the
medium represented by WA parameters. Along a profile, the formula depends on 4 WA
parameters.

Although the derivations and tests were performed for the converted P-SV wave, due
to its kinematic reciprocity, the formula holds also for the converted SV-P wave.

Performed tests indicate that the accuracy of the moveout formula is close to the
accuracy of formulae derived in a similar way earlier for unconverted P or SV waves. The
tests also show that the formula can be used not only for weakly, but also for moderately
anisotropic media.

The derived formulae offer several possible extensions and generalizations. It is straight-
forward to use the formula for the derivation of expressions for the NMO velocity and the
quartic coefficient of the Taylor expansion of the squared traveltime of a converted wave
with respect to the offset. These quantities could be used for the generalization of the
present formula, which holds for a single homogeneous layer, for the stack of horizontal
layers. It also seems that using the concept of a common S wave, the formula could be
generalized for an anisotropic medium of arbitrary symmetry and orientation.
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Farra, V., and I. Pšenč́ık, 2013, Moveout approximations for P and SV waves in VTI
media: Geophysics, 78, WC81–WC92.
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