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Summary

The robust algorithm of nonlinear hypocentre determination is proposed. The algorithm
has been coded in a flexible modular way for testing purposes. The method and
application of the code is illustrated on a numerical example of hypocentre determination
of four local earthquakes in the a priori 3–D velocity model of the seismically active part
of Western Bohemia.
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1. Introduction

This paper demonstrates a flexible and robust method for nonlinear hypocenter de-
termination. The method is based on direct evaluation of the nonnormalized 3–D
marginal a posteriori density function which describes the relative probability of the
seismic hypocentre (Tarantola & Valette, 1982). The method has been used with the
first–arrival travel times by Moser, Van Eck & Nolet (1992), whereas we use it with the
ray–theory travel times. The theory underlying the method is summarized by Bulant
& Klimeš (2015).

The multivalued ray–theory travel times from the receivers to the gridpoints of
a 3–D spatial grid of points can efficiently be calculated in the velocity model using
the controlled initial–value ray tracing (Bulant, 1996; 1997; 1999; 2012) followed by
the interpolation of travel times within ray cells (Bulant & Klimeš, 1999). The con-
trolled initial–value ray tracing uses the initial–value ray tracing algorithm according
to Červený, Klimeš & Pšenč́ık (1988).

In order to estimate the uncertainty of the hypocentral position, we also need to
know the uncertainty of the measured arrival times and the uncertainty of the velocity
model. The uncertainty of the measured arrival times is expressed in terms of the
data covariance matrix of the measured arrival times, which is usually diagonal and
composed of the squares of the standard deviations of the measured arrival times. The
uncertainty of the velocity model is expressed in terms of the model covariance function
(Franklin, 1970; Tarantola & Valette, 1982; Tarantola & Nercessian, 1984; Tarantola,
1987; Klimeš, 2002a) which is projected onto the uncertainty of the hypocentral position
through the geometrical covariances of theoretical travel times calculated in the velocity
model (Klimeš, 2002b; 2008). In order to estimate the uncertainty of the hypocentral
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position, we thus need the standard deviations of the measured arrival times, and the
geometrical covariances of theoretical travel times calculated using the model covariance
function.

For the sake of simplicity and rapid numerical implementation, we consider just
the diagonal elements of the geometrical travel–time covariance matrix in this paper.
We are going to propose the numerical algorithm of calculating the whole geometrical
travel–time covariance matrix at the gridpoints of a 3–D spatial grid in the near future.

In Section 2, we describe the numerical algorithm of nonlinear hypocentre de-
termination, based on the equations by Bulant & Klimeš (2015). We concentrate
on directly calculating the nonnormalized 3–D marginal a posteriori density function
which describes the relative probability of the seismic hypocentre. The calculated
nonnormalized 3–D marginal a posteriori density function is discretized at the gridpoints
of a sufficiently dense 3–D spatial grid of points.

In Section 3, we test the first version of the computer code for nonlinear hypocentre
determination using four examples of local earthquakes recorded on January 1997 by
the WEBNET local seismic network.

2. Numerical algorithm

The nonlinear hypocentre determination is composed of two main steps. The first step
consists in computing theoretical travel times in the 3–D velocity model at the nodes of
a dense rectangular grid covering the region where the hypocentre is searched for.

In the second step, we use the theoretical travel times, their standard deviations,
measured arrival times and their standard deviations for the determination of the
nonnormalized 3–D marginal a posteriori density function which describes the relative
probability of the seismic hypocentre.

2.1. Travel times on a spatial grid of points

The nature of the theoretical travel times should correspond to the measured travel
times. For instance, first–arrival travel times calculated by an eikonal solver or mul-
tivalued ray–theory travel times corresponding to a specified elementary wave may be
considered.

We consider the ray–theory travel times. For their computation, we use software
packages FORMS, MODEL and CRT (Červený, Klimeš & Pšenč́ık, 1988; Bucha &
Bulant, 2015).

A sufficiently dense system of rays for each considered elementary wave from each
receiver is computed in the whole 3–D model by controlled initial–value ray tracing
(Bulant, 1996; 1997; 1999; 2012). The travel times at the gridpoints of the 3–D location
grid are then obtained by the interpolation of travel times within ray cells (Bulant &
Klimeš, 1999).
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2.2. Nonlinear hypocentre determination on a spatial grid of points

The numerical algorithm of hypocentre determination is based on the equations sum-
marized by Bulant & Klimeš (2015, sec. 2).

Input data for the hypocentre determination algorithm consist in N arrival times
Ti, i = 1, 2, ..., N with their standard deviations ∆Ti, and in theoretical travel times τi

calculated in the velocity model and discretized at the nodes of a sufficiently dense 3–D
grid of points. We assume that standard deviations ∆τi of theoretical travel times read
(Bulant & Klimeš, 2015, eq. 55)

∆τi = σ

(

τi

θ

)1+H

, (1)

where H is the Hurst exponent, and σ is the travel–time standard deviation at reference
travel time θ.

Similarly as Bulant & Klimeš (2015, sec. 6.1), we neglect all off–diagonal elements
of the matrix of geometrical covariances of theoretical travel times although we know
that it is incorrect.

At the nodes of the 3–D grid of points used for the hypocentre determination, we
define three sums

an =
n

∑

i=1

(∆τ2
i
+∆T 2

i
)−1 , (2)

bn =
n

∑

i=1

(∆τ2
i
+∆T 2

i
)−1(Ti−τi) (3)

and

dn =

n
∑

i=1

(∆τ2
i +∆T 2

i )−1(Ti−τi)
2 . (4)

These sums can be accumulated receiver by receiver as

an =
n

∑

i=1

∆an (5)

with

∆an = (∆τ2
i +∆T 2

i )−1 , (6)

bn =

n
∑

i=1

∆bn (7)

with

∆bn = ∆an (Ti−τi) , (8)

and

dn =
n

∑

i=1

∆dn (9)

with

∆dn = ∆bn (Ti−τi) . (10)
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The discretized hypocentral time then reads (Bulant & Klimeš, 2015, eq. 14)

h =
bN

aN

, (11)

and its standard deviation is (Bulant & Klimeš, 2015, eq. 16)

∆h = (aN )−
1

2 . (12)

The nonnormalized 3–D marginal a posteriori density function which describes the
relative probability of the seismic hypocentre reads (Bulant & Klimeš, 2015, eq. 17)

σP3 = exp
(

− 1

2
cN

)

, (13)

where

cN = dN − b2
N

aN

. (14)

Since the subtraction in relation (14) introduces rounding errors into the numerical
algorithm, we do not calculate cN using summation (9) and relation (14). Instead, we
define

cn = dn − b2
n

an

, (15)

and calculate cN directly using sums

cn =

n
∑

i=1

∆cn (16)

with positive increments ∆cn. Inserting sums (5), (7), (9) and (16) into definition (15),
we obtain relation

∆cn = ∆dn − (bn−1+∆bn)2

an

+
(bn−1)

2

an−1

, (17)

which we express as

∆cn =
∆dnan−1(an−1 + ∆an) − (bn−1+∆bn)2an−1 + (bn−1)

2(an−1 + ∆an)

an−1 an

. (18)

Two squares in the numerator of expression (18) partially cancel,

∆cn =
∆dnan−1(an−1 + ∆an) − 2bn−1∆bnan−1 − (∆bn)2an−1 + (bn−1)

2∆an

an−1 an

. (19)

We insert definitions (8) and (10) into expression (19), and obtain

∆cn =
(Ti−τi)

2a2
n−1∆an − 2bn−1(Ti−τi) ∆anan−1 + (bn−1)

2∆an

an−1 an

, (20)

which reads

∆cn =
[(Ti−τi) an−1 − bn−1]

2

an−1 an

∆an . (21)

Since the algorithm of nonlinear hypocentre determination consists in calculations at
the nodes of a 3–D grid of points, the above proposed numerical algorithm has been
coded in the form of command files loc0.cal, loc1.cal and loc2.cal for program
grdcal.for which performs calculations at the nodes of a grid of points. Command
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files loc0.cal, loc1.cal and loc2.cal are located in package FORMS (Bucha, Bulant
& Klimeš, 2000).

Command file loc0.cal just initiates sums (5), (7) and (16) to zeros by writing
grid values a0 = 0, b0 = 0 and

√
c0 = 0.

Command file loc1.cal is used for each measured arrival time corresponding to
the event, and calculates sums (5), (7) and (16) composed of contributions (6), (8) and
(21). Note that command file loc1.cal calculates cn, but reads and writes

√
cn instead

of cn. Command file loc1.cal thus reads the grid values of an−1, bn−1 and
√

cn−1. It
then calculates and writes the grid values of an, bn and

√
cn.

Command file loc2.cal finally reads the grid values of sums aN , bN and
√

cN , and
converts them into discretized hypocentral time (11), its discretized standard deviation
(12), and the nonnormalized 3–D marginal a posteriori density function (13) which
describes the relative probability of the seismic hypocentre.

The value y of the arrival–time misfit can be obtained from the maximum σmax
P3

of the nonnormalized marginal a posteriori density function σP3(xi) of hypocentral
coordinates as (Bulant & Klimeš, 2015, eq. 29)

y = −2 ln(σmax
P3 ) . (22)

3. Numerical example

The above mentioned code is tested here by determining hypocentres of four local
earthquakes recorded on January 1997 by the WEBNET local seismic network and
one receiver in Germany, see Figures 1 and 2. Three tested local earthquakes were
measured by 10 receivers and one event was recorded by 6 receivers. Table 1 displays the
coordinates of the receivers, and Table 2 contains arrival times of four local earthquakes.
Errors of the determination of arrival times are 4 ms for all receivers, except TRC and
VIEL with 8 ms (J. Horálek, Geophysical Institute, personal communication).

receiver X Y Z

CAC–Částkov 1012.285 877.220 0.578
KOC–Kopaniny 999.990 894.369 0.582
KRC–Kraslice 996.160 872.307 0.754
LAC–Lazy 1028.072 870.656 0.838
NKC–Nový Kostel 1006.015 879.876 0.568
SBC–Seeberg 1015.130 893.324 0.502
SKC–Skalná 1011.952 887.139 0.457
TRC–Trojmeźı 994.770 899.922 0.566
VIEL–Viel 1007.031 904.927 0.670
ZHC–Zelená Hora 1022.225 892.640 0.631

Table 1: Receiver coordinates X, Y, Z (Křovák system in km and the elevation in km).

As the velocity model, we use the Western Bohemia a priori model, which was
described in detail by Klimeš (1995), who created it manually as the initial velocity
model for the iterative inversion of travel times from refraction seismic measurements.
Refer to Bulant (1996) for ray tracing in the Western Bohemia a priori model. Figure 1
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Figure 1: Part of the Western Bohemia a priori velocity model with the receivers and surface velocities
(the shadows are caused by the topography). The thick line rectangle limits the location grid. Receivers
HBC and STC are not considered.

displays a part of Western Bohemia a priori model with the surface P wave velocities
(values of the velocity increase from green to red colour), and the positions of the
receivers. The rectangle limits the location grid extending between the elevations of
-17 km and 0 km. The dimensions of the grid are ∆X=30 km, ∆Y =30 km, ∆Z=17 km.
The grid step is 0.5 km in all three directions.

For the computation of ray–theory travel times in the 3–D Western Bohemia a priori
velocity model, we use software packages FORMS, MODEL and CRT (Červený, Klimeš
& Pšenč́ık, 1988; Bucha & Bulant, 2015). A sufficiently dense system of rays from
each of 10 selected receivers is computed in the whole 3–D model by controlled initial–
value ray tracing (Bulant, 1996; 1997; 1999; 2012). Only the P waves are considered.
The travel times at the gridpoints of the 3–D location grid are then obtained by the
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Figure 2: Seismically active region of Western Bohemia. The thick line rectangle limits the location
grid. Four approximately elliptical curves limit the regions where the probability density functions of
the four epicentres exceed 10% of the respective maximum values.

interpolation of travel times within ray cells (Bulant & Klimeš, 1999).
We do not know the accuracy of the 3–D Western Bohemia a priori velocity model.

We thus substitute the correct standard deviations of theoretical travel times with the
standard deviations corresponding to the 1–D mean model of the region by Klimeš
(2002b, eq. 59). The standard travel–time deviations are given by relation (1) with
deviation

σ = 0.062 s (23)

at reference travel time
θ = 1 s , (24)

and with Hurst exponent
H = −0.12 (25)
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receiver event 1 event 2 event 3 event 4

CAC–Částkov 30.168 45.100 59.812 21.292
KOC–Kopaniny 31.316 46.228 60.972 22.788
KRC–Kraslice 30.856 45.804 60.484 22.292
LAC–Lazy 32.720 47.656 62.340
NKC–Nový Kostel 29.856 44.748 59.512 21.060
SBC–Seeberg 31.472 46.372 61.108 22.672
SKC–Skalná 30.484 45.376 60.140 21.636
TRC–Trojmeźı 32.432 47.352 62.072
VIEL–Viel 32.672 47.584 62.312
ZHC–Zelená Hora 32.132 47.036 61.768

Table 2: Arrival times in seconds of four local earthquakes (P waves).

(Klimeš, 2002b, eqs. 60, 68). The crossvariances of theoretical travel times are set to
zeros although they should be considered, because their calculation has not been coded
yet.

Using the P–wave arrival times of Table 2, we determined the nonnormalized 3–D
marginal a posteriori density functions (13) which describe the relative probability of the
seismic hypocentres of the 4 events. The maxima of the nonnormalized 3–D marginal
a posteriori density function and arrival–time misfit y defined by (22) resulting from
the nonlinear hypocentre determination are displayed in Table 3.

event σmax
P3

y

1 0.569 1.126
2 0.686 0.754
3 0.605 1.007
4 0.908 0.193

Table 3: For each event, the maximum σ
max

P3
of the nonnormalized 3–D marginal a posteriori density

function (13) which describes the relative probability of the seismic hypocentre, and arrival–time misfit
y defined by (22).

The mean value of the arrival–time misfit should read (Bulant & Klimeš, 2015,
eq. 48)

〈y〉 = N−4 , (26)

where N is the number of measured arrival times. The average number of arrival times
is N = 9, see Table 2. The average arrival–time misfit

y = 0.770 (27)

in Table 3 is 6.5 times smaller than the average

N − 4 = 5.000 (28)

of the right–hand sides of estimation (26). This disagreement has probably two reasons:
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Figure 3: The locations of the centres of small cubes which are displayed as yardsticks in Figures 4–11
(small red spheres), together with their projections onto the sides of the grid used for the nonlinear
hypocentre determination. The displayed dimensions of the grid used for the nonlinear hypocentre
determination are 30 km×30 km×17 km.

1. Average arrival–time misfit y resulting from our incorrect hypocentre determination
with the zero crossvariances of theoretical travel times is smaller than the average
of correct arrival–time misfits given by estimation (26), see Bulant & Klimeš (2015,
sec. 6.3).
2. The 3–D Western Bohemia a priori velocity model may be more accurate than the
1–D mean model of the region by Klimeš (2002b, eq. 59), and standard deviations (1)
of theoretical travel times with coefficients (23)–(25) may thus be overestimated.

Note that we may adjust overestimated factor σ in standard theoretical travel–time
deviations (1) in such a way, that average arrival time misfit y will correspond to its
estimation N−4, see the approach by Bulant & Klimeš (2015, sec. 7).

The nonnormalized marginal a posteriori density functions (13) describing the
relative probability of the seismic hypocentres are displayed in Figures 4 to 7. The
locations of the centres of small cubes which are displayed as yardsticks in Figures 4–11
are displayed in Figure 3. The details of these nonnormalized marginal a posteriori
density functions are displayed in Figures 8 to 11. We can observe much greater
uncertainty of the hypocentral position of event 4 determined just from six P–wave
arrival times.

We have observed that the location of the maximum value of the nonnormalized
3–D marginal a posteriori density function may considerably differ from the mean
hypocentre location given by the nonnormalized 3–D marginal a posteriori density
function. Moreover, the mean hypocentre location often considerably depends on the
dimensions of the location grid. Refer to Figure 7 for an obvious example.
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Figure 4: Nonnormalized 3–D marginal a posteriori density function of event 1 determined using 10
P–wave arrival times. The zero values are displayed in yellow. The nonzero values range through green,
cyan, blue and magenta to the maximum value displayed in red. The undefined values are displayed
in gray, and denote the gridpoints at which at least one theoretical travel time is missing. The small
cube has the sides of 2 km.

Figure 5: Nonnormalized 3–D marginal a posteriori density function of event 2 determined using 10
P–wave arrival times. The zero values are displayed in yellow. The nonzero values range through green,
cyan, blue and magenta to the maximum value displayed in red. The undefined values are displayed
in gray, and denote the gridpoints at which at least one theoretical travel time is missing. The small
cube has the sides of 2 km.
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Figure 6: Nonnormalized 3–D marginal a posteriori density function of event 3 determined using 10
P–wave arrival times. The zero values are displayed in yellow. The nonzero values range through green,
cyan, blue and magenta to the maximum value displayed in red. The undefined values are displayed
in gray, and denote the gridpoints at which at least one theoretical travel time is missing. The small
cube has the sides of 2 km.

Figure 7: Nonnormalized 3–D marginal a posteriori density function of event 4 determined using 6
P–wave arrival times. The zero values are displayed in yellow. The nonzero values range through green,
cyan, blue and magenta to the maximum value displayed in red. The undefined values are displayed
in gray, and denote the gridpoints at which at least one theoretical travel time is missing. The small
cube has the sides of 2 km.
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Figure 8: The detail of the interpolated discretized nonnormalized 3–D marginal a posteriori density
function of event 1, displaying the hypocentral region of Figure 4. The cube has the sides of 2 km.

Figure 9: The detail of the interpolated discretized nonnormalized 3–D marginal a posteriori density
function of event 2, displaying the hypocentral region of Figure 5. The cube has the sides of 2 km.
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Figure 10: The detail of the interpolated discretized nonnormalized 3–D marginal a posteriori density
function of event 3, displaying the hypocentral region of Figure 6. The cube has the sides of 2 km.

Figure 11: The detail of the interpolated discretized nonnormalized 3–D marginal a posteriori density
function of event 4, displaying the hypocentral region of Figure 7. The cube has the sides of 2 km.
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