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Summary

The robust algorithm of nonlinear hypocentre determination is proposed. The algorithm
has been coded in a exible modular way for testing purposes. The method and
application of the code is illustrated on a numerical exampé of hypocentre determination
of four local earthquakes in the a priori 3{D velocity model of the seismically active part
of Western Bohemia.
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1. Introduction

This paper demonstrates a exible and robust method for nonlnear hypocenter de-
termination. The method is based on direct evaluation of the nonnormalized 3{D
marginal a posteriori density function which describes therelative probability of the

seismic hypocentre (Tarantola & Valette, 1982). The methodhas been used with the
rst{arrival travel times by Moser, Van Eck & Nolet (1992), w hereas we use it with the
ray{theory travel times. The theory underlying the method i s summarized by Bulant
& Klimes (2015).

The multivalued ray{theory travel times from the receivers to the gridpoints of
a 3{D spatial grid of points can e ciently be calculated in th e velocity model using
the controlled initial{value ray tracing (Bulant, 1996; 19 97; 1999; 2012) followed by
the interpolation of travel times within ray cells (Bulant & Klimes, 1999). The con-
trolled initial{value ray tracing uses the initial{value r ay tracing algorithm according
to Cervery, Klimes & Pserck (1988).

In order to estimate the uncertainty of the hypocentral position, we also need to
know the uncertainty of the measured arrival times and the urcertainty of the velocity
model. The uncertainty of the measured arrival times is expessed in terms of the
data covariance matrix of the measured arrival times, whichis usually diagonal and
composed of the squares of the standard deviations of the meared arrival times. The
uncertainty of the velocity model is expressed in terms of tle model covariance function
(Franklin, 1970; Tarantola & Valette, 1982; Tarantola & Ner cessian, 1984; Tarantola,
1987; Klimes, 2002a) which is projected onto the uncertairtly of the hypocentral position
through the geometrical covariances of theoretical travekimes calculated in the velocity
model (Klimes, 2002b; 2008). In order to estimate the uncetainty of the hypocentral
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position, we thus need the standard deviations of the measwd arrival times, and the
geometrical covariances of theoretical travel times calclated using the model covariance
function.

For the sake of simplicity and rapid numerical implementation, we consider just
the diagonal elements of the geometrical travel{time covarance matrix in this paper.
We are going to propose the numerical algorithm of calculathg the whole geometrical
travel{time covariance matrix at the gridpoints of a 3{D spa tial grid in the near future.

In Section 2, we describe the numerical algorithm of nonlinar hypocentre de-
termination, based on the equations by Bulant & Klimes (2015). We concentrate
on directly calculating the nonnormalized 3{D marginal a posteriori density function
which describes the relative probability of the seismic hymcentre. The calculated
nonnormalized 3{D marginal a posteriori density function is discretized at the gridpoints
of a su ciently dense 3{D spatial grid of points.

In Section 3, we test the rst version of the computer code fornonlinear hypocentre
determination using four examples of local earthquakes rewded on January 1997 by
the WEBNET local seismic network.

2. Numerical algorithm

The nonlinear hypocentre determination is composed of two rain steps. The rst step
consists in computing theoretical travel times in the 3{D velocity model at the nodes of
a dense rectangular grid covering the region where the hyp@mntre is searched for.

In the second step, we use the theoretical travel times, theistandard deviations,
measured arrival times and their standard deviations for the determination of the
nonnormalized 3{D marginal a posteriori density function which describes the relative
probability of the seismic hypocentre.

2.1. Travel times on a spatial grid of points

The nature of the theoretical travel times should correspom to the measured travel
times. For instance, rst{arrival travel times calculated by an eikonal solver or mul-
tivalued ray{theory travel times corresponding to a speci ed elementary wave may be
considered.

We consider the ray{theory travel times. For their computation, we use software
packages FORMS, MODEL and CRT (Cervery, Klimes & RFserck, 1988; Bucha &
Bulant, 2015).

A su ciently dense system of rays for each considered elemdary wave from each
receiver is computed in the whole 3{D model by controlled intial{value ray tracing
(Bulant, 1996; 1997; 1999; 2012). The travel times at the gdpoints of the 3{D location
grid are then obtained by the interpolation of travel times within ray cells (Bulant &
Klimes, 1999).
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2.2. Nonlinear hypocentre determination on a spatial grid o f points

The numerical algorithm of hypocentre determination is basd on the equations sum-
marized by Bulant & Klimes (2015, sec. 2).

Input data for the hypocentre determination algorithm consist in N arrival times
Ti, i =1;2;:::; N with their standard deviations T;, and in theoretical travel times
calculated in the velocity model and discretized at the nods of a su ciently dense 3{D
grid of points. We assume that standard deviations ; of theoretical travel times read
(Bulant & Klimes, 2015, eq. 55)

| = i ; (1)

whereH is the Hurst exponent, and is the travel{time standard deviation at reference
travel time

Similarly as Bulant & Klimes (2015, sec. 6.1), we neglect al o {diagonal elements
of the matrix of geometrical covariances of theoretical travel times although we know
that it is incorrect.

At the nodes of the 3{D grid of points used for the hypocentre cetermination, we
de ne three sums

X
an= ( {+ TH? (2)
i=1
X
b= ( 2+ TH YT ) (3)
i=1
and
X
do= (T NI )® (4)

i=1
These sums can be accumulated receiver by receiver as

X
an = an (5)
i=1
with
an=( ¢+ TH L (6)
X
b = bn (7)
i=1
with
bh= an (Ti ) (8)
and
X
dn = dn (9)
i=1
with
dh= b (Ti i) (10)



The discretized hypocentral time then reads (Bulant & Klimes, 2015, eq. 14)

_ b
h= o (11)

and its standard deviation is (Bulant & Klimes, 2015, eq. 16)
h=(ay) 7 : (12)

The nonnormalized 3{D marginal a posteriori density function which describes the
relative probability of the seismic hypocentre reads (Bulait & Klimes, 2015, eq. 17)

P3 =€Xp  3CN (13)
where
cn = dy ﬁ . (14)
an

Since the subtraction in relation (14) introduces rounding errors into the numerical
algorithm, we do not calculate ¢y using summation (9) and relation (14). Instead, we
de ne

Ch = Oy sﬁ—n ; (15)
and calculate ¢y directly using sums
X
Cn = Cn (16)

with positive increments ¢,. Inserting sums (5), (7), (9) and (16) into de nition (15),
we obtain relation
(b o+ )% (b 2)?

= d ; 17
& " an an 1 ()

which we express as

¢ = _Gnan 1@ 1+ an) (b ;+ Z)Zan 1+ (0 1)°@n 1% @) g
n 1 ¢<n

Two squares in the numerator of expression (18) partially cacel,

G, = dhan 1(an 1+ an) 2o, 1abnla£ 1 ( hﬁ)zan 1+ (b 1)2 an ©(19)

We insert de nitions (8) and (10) into expression (19), and dbtain

6 = (i %2 ; an 2y o(Ti i) @nan 1+(by 1)? ay ; (20)
dn 1 ap

which reads

_ UM Dan 1 by a]P
Ch =
an 1 a9y
Since the algorithm of nonlinear hypocentre determination consists in calculations at
the nodes of a 3{D grid of points, the above proposed numeridaalgorithm has been
coded in the form of command leslocO.cal , locl.cal and loc2.cal for program
grdcal.for  which performs calculations at the nodes of a grid of points. Command

an (21)
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les locO.cal ,locl.cal andloc2.cal are located in package FORMS (Bucha, Bulant
& Klimes, 2000).

Command le locO.cal just initiates sums (5), (7) and (16) to zeros by writing
grid valuesap =0, h =0 and P Cy =0.

Command le locl.cal is used for each measured arrival time corresponding to
the event, and calculates sums (5), (7) and (16) composed obatributions {)6), (8) and
(21). Note that command le locl.cal calculatesc,, but reads and writes™ ¢, instead
of ¢,. Command le locl.cal thus reads the grid valu%s ofa, 1,b, tand" T, 1. It
then calculates and writes the grid values ofa,, b, and = C,.

Command le loc2.cal nally reads the grid values of sumsay , by and P Cn , and
converts them into discretized hypocentral time (11), its discretized standard deviation
(12), and the nonnormalized 3{D marginal a posteriori densty function (13) which
describes the relative probability of the seismic hypocente.

The value y of the arrival{time mist can be obtained from the maximum g%~
of the nonnormalized marginal a posteriori density function p3(X;) of hypocentral
coordinates as (Bulant & Klimes, 2015, eq. 29)

y= 2In( §) : (22)

3. Numerical example

The above mentioned code is tested here by determining hype@ntres of four local
earthquakes recorded on January 1997 by the WEBNET local ssmic network and
one receiver in Germany, see Figures 1 and 2. Three tested lalcearthquakes were
measured by 10 receivers and one event was recorded by 6 ra@es. Table 1 displays the
coordinates of the receivers, and Table 2 contains arrivalimes of four local earthquakes.
Errors of the determination of arrival times are 4 ms for all receivers, except TRC and
VIEL with 8 ms (J. Homlek, Geophysical Institute, persona | communication).

receiver X Y Z
CAC{ Gastkov 1012.285 877.220 0.578
KOC{Kopaniny 999.990 894.369 0.582
KRC{Kraslice 996.160 872.307 0.754
LAC{Lazy 1028.072 870.656 0.838
NKC{Now Kostel 1006.015 879.876 0.568
SBC{Seeberg 1015.130 893.324 0.502
SKC{Skalra 1011.952 887.139 0.457
TRC{Trojmez 994.770 899.922 0.566
VIEL{Viel 1007.031 904.927 0.670
ZHC{Zelera Hora 1022.225 892.640 0.631

Table 1: Receiver coordinates X, Y, Z (Kowak system in km and the elev  ation in km).

As the velocity model, we use the Western Bohemia a priori modl, which was
described in detail by Klimes (1995), who created it manually as the initial velocity
model for the iterative inversion of travel times from refraction seismic measurements.
Refer to Bulant (1996) for ray tracing in the Western Bohemia a priori model. Figure 1
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Figure 1: Part of the Western Bohemia a priori velocity model with the receiv  ers and surface velocities
(the shadows are caused by the topography). The thick line recta ngle limits the location grid. Receivers
HBC and STC are not considered.

displays a part of Western Bohemia a priori model with the sufface P wave velocities
(values of the velocity increase from green to red colour), ad the positions of the
receivers. The rectangle limits the location grid extendirg between the elevations of
-17km and 0 km. The dimensions of the grid are X=30km, Y=30km, Z=17km.
The grid step is 0.5km in all three directions.

For the computation of ray{theory travel times in the 3{D Wes tern Bohemia a priori
velocity model, we use software packages FORMS, MODEL and CR( Cervery, Klimes
& Pserck, 1988; Bucha & Bulant, 2015). A suciently dens e system of rays from
each of 10 selected receivers is computed in the whole 3{D metlby controlled initial{
value ray tracing (Bulant, 1996; 1997; 1999; 2012). Only theP waves are considered.
The travel times at the gridpoints of the 3{D location grid ar e then obtained by the
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Figure 2: Seismically active region of Western Bohemia. The thick line re ctangle limits the location
grid. Four approximately elliptical curves limit the regions wh  ere the probability density functions of
the four epicentres exceed 10% of the respective maximum value s.

interpolation of travel times within ray cells (Bulant & Kli mes, 1999).

We do not know the accuracy of the 3{D Western Bohemia a priorivelocity model.
We thus substitute the correct standard deviations of theoretical travel times with the
standard deviations corresponding to the 1{D mean model of he region by Klimes
(2002b, eq. 59). The standard travel{time deviations are gven by relation (1) with
deviation

=0:062s (23)
at reference travel time
=1s (24)
and with Hurst exponent
H= 012 (25)



receiver event 1 event 2 event 3 event 4
CAC{ Gastkov 30.168 45.100 59.812 21.292
KOC{Kopaniny 31.316 46.228 60.972 22.788
KRC{Kraslice 30.856 45.804 60.484 22.292
LAC{Lazy 32.720 47.656 62.340
NKC{Now Kostel 29.856 44,748 59.512 21.060
SBC{Seeberg 31.472 46.372 61.108 22.672
SKC{Skalra 30.484 45.376 60.140 21.636
TRC{Trojmez 32.432 47.352 62.072
VIEL{Viel 32.672 47.584 62.312
ZHC{Zelera Hora 32.132 47.036 61.768

Table 2:

Arrival times in seconds of four local earthquakes (P waves).

(Klimes, 2002b, eqgs. 60, 68). The crossvariances of theotieal travel times are set to
zeros although they should be considered, because their calation has not been coded
yet.

Using the P{wave arrival times of Table 2, we determined the ronnormalized 3{D
marginal a posteriori density functions (13) which descrile the relative probability of the
seismic hypocentres of the 4 events. The maxima of the nonnoralized 3{D marginal
a posteriori density function and arrival{time mist y de ned by (22) resulting from
the nonlinear hypocentre determination are displayed in Teble 3.

event Pa y
1 0.569 1.126
2 0.686 0.754
3 0.605 1.007
4 0.908 0.193
Table 3: For each event, the maximum 72 of the nonnormalized 3{D marginal a posteriori density

function (13) which describes the relative probability of the s
y de ned by (22).

eismic hypocentre, and arrival{time mis t

The mean value of the arrival{time mist should read (Bulant & Klimes, 2015,
eq. 48)
hyi=N 4 ; (26)

where N is the number of measured arrival times. The average numberfaarrival times
isN =9, see Table 2. The average arrival{time mis t

y=0:770 (27)
in Table 3 is 6.5 times smaller than the average
N 4 =5:000 (28)

of the right{hand sides of estimation (26). This disagreemeat has probably two reasons:
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Figure 3: The locations of the centres of small cubes which are displayed as yardsticks in Figures 4{11
(small red spheres), together with their projections onto the s ides of the grid used for the nonlinear
hypocentre determination. The displayed dimensions of the gri d used for the nonlinear hypocentre
determination are 30km  30km 17 km.

1. Average arrival{time mist y resulting from our incorrect hypocentre determination
with the zero crossvariances of theoretical travel times issmaller than the average
of correct arrival{time mis ts given by estimation (26), se e Bulant & Klimes (2015,
sec. 6.3).

2. The 3{D Western Bohemia a priori velocity model may be moreaccurate than the
1{D mean model of the region by Klimes (2002b, eq. 59), and sandard deviations (1)
of theoretical travel times with coe cients (23){(25) may t hus be overestimated.

Note that we may adjust overestimated factor in standard theoretical travel{time
deviations (1) in such a way, that average arrival time mist y will correspond to its
estimation N 4, see the approach by Bulant & Klimes (2015, sec. 7).

The nonnormalized marginal a posteriori density functions (13) describing the
relative probability of the seismic hypocentres are displged in Figures 4 to 7. The
locations of the centres of small cubes which are displayedsayardsticks in Figures 4{11
are displayed in Figure 3. The details of these nonnormalizg¢ marginal a posteriori
density functions are displayed in Figures 8 to 11. We can olmve much greater
uncertainty of the hypocentral position of event 4 determined just from six P{wave
arrival times.

We have observed that the location of the maximum value of thenonnormalized
3{D marginal a posteriori density function may considerably dier from the mean
hypocentre location given by the nonnormalized 3{D margind a posteriori density
function. Moreover, the mean hypocentre location often cosiderably depends on the
dimensions of the location grid. Refer to Figure 7 for an obvbus example.
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Figure 4: Nonnormalized 3{D marginal a posteriori density function of eve nt 1 determined using 10
P{wave arrival times. The zero values are displayed in yellow. Th e nonzero values range through green,
cyan, blue and magenta to the maximum value displayed in red. T he unde ned values are displayed
in gray, and denote the gridpoints at which at least one theoreti cal travel time is missing. The small

cube has the sides of 2 km.

Figure 5: Nonnormalized 3{D marginal a posteriori density function of eve nt 2 determined using 10
P{wave arrival times. The zero values are displayed in yellow. Th e nonzero values range through green,
cyan, blue and magenta to the maximum value displayed in red. T he unde ned values are displayed
in gray, and denote the gridpoints at which at least one theoreti cal travel time is missing. The small

cube has the sides of 2 km.
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Figure 6: Nonnormalized 3{D marginal a posteriori density function of eve nt 3 determined using 10
P{wave arrival times. The zero values are displayed in yellow. Th e nonzero values range through green,
cyan, blue and magenta to the maximum value displayed in red. T he unde ned values are displayed
in gray, and denote the gridpoints at which at least one theoreti cal travel time is missing. The small

cube has the sides of 2 km.

Figure 7: Nonnormalized 3{D marginal a posteriori density function of eve nt 4 determined using 6
P{wave arrival times. The zero values are displayed in yellow. Th e nonzero values range through green,
cyan, blue and magenta to the maximum value displayed in red. T he unde ned values are displayed
in gray, and denote the gridpoints at which at least one theoreti cal travel time is missing. The small

cube has the sides of 2 km.
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Figure 8: The detail of the interpolated discretized nonnormalized 3{D m arginal a posteriori density
function of event 1, displaying the hypocentral region of Figu re 4. The cube has the sides of 2 km.

.._I/

Figure 9: The detail of the interpolated discretized nonnormalized 3{D m arginal a posteriori density
function of event 2, displaying the hypocentral region of Figu re 5. The cube has the sides of 2 km.
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Figure 10: The detail of the interpolated discretized nonnormalized 3{D m  arginal a posteriori density
function of event 3, displaying the hypocentral region of Figu re 6. The cube has the sides of 2 km.

Figure 11: The detail of the interpolated discretized nonnormalized 3{D m  arginal a posteriori density
function of event 4, displaying the hypocentral region of Figu re 7. The cube has the sides of 2 km.
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