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Summary

The Hamiltonian geometry is a generalization of the Finsler geometry, which is in
turn a generalization of the Riemann geometry. The Hamiltonian geometry is based
on the first–order partial differential Hamilton–Jacobi equations for the characteristic
function which represents the distance between two points. The Hamiltonian equations
of geodesic deviation may serve to calculate geodesic deviations, amplitudes of waves,
and the second–order spatial derivatives of the characteristic function or action. The
propagator matrix of geodesic deviation contains all the linearly independent solutions
of the linear ordinary differential equations of geodesic deviation.

In this paper, we derive the relations between the propagator matrix of the
Hamiltonian equations of geodesic deviation and the second–order spatial derivatives
of the characteristic function for a general Hamiltonian function. The derived relations
represent the generalization of the analogous relations, previously derived for the Finsler
geometry, to an arbitrary Hamiltonian function.
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1. Introduction

The basics of a very general geometry of geodesics (rays) were formulated by Sir
William Rowan Hamilton in 1832 (Hamilton, 1837). Hamilton’s formulation is based
on the first–order partial differential Hamilton–Jacobi equations for the characteristic
function which represents the distance between points. The form of the Hamilton–Jacobi
equation is specified in terms of the Hamiltonian function. Hamilton (1837) considered
the Hamiltonian functions which are homogeneous functions of the first degree with
respect to the spatial gradient of the characteristic function, but his theory is applicable
to general Hamiltonian functions as well. Hamilton’s formulation with a general
Hamiltonian function represents a very useful generalization of the Finsler geometry,
and describes the propagation of various waves (e.g., elastic, electromagnetic, Dirac) in
the high–frequency approximation. A general Hamiltonian function is especially useful
for describing waves which propagate with different velocities in opposite directions
(e.g., electrons in an electromagnetic field, sound waves in flowing media). The Finsler
geometry (Finsler, 1918) represents a special case of the Hamiltonian geometry, with
the Hamiltonian functions which are homogeneous functions of the second degree with
respect to the spatial gradient of the characteristic function.

The non–linear ordinary differential equations of geodesics (Hamilton’s equations)
may serve to calculate geodesics, the characteristic function (point–to–point distance,
two–point travel time) with its first–order spatial derivatives, or the action (distance
for general initial conditions, travel time for general initial conditions) with its first–
order spatial derivatives. The linear ordinary differential equations of geodesic deviation
derived by Červený (1972) may serve to calculate geodesic deviations, amplitudes of
waves, the second–order spatial derivatives of the characteristic function, or the second–
order spatial derivatives of the action. Geodesic perturbations, higher–order geodesic
deviations, and the perturbation derivatives and higher–order spatial derivatives of the
characteristic function or of the action can be calculated by quadratures along geodesics
(Klimeš, 2002; 2010).

The characteristic function and the propagator matrix of geodesic deviation have
found many important applications in wave propagation (Červený, 2001). Klimeš (2009)
derived the relations between the propagator matrix of geodesic deviation and the
second–order spatial derivatives of the characteristic function in the Finsler geometry,
which corresponds to a Hamiltonian function which is a homogeneous function of the
second degree with respect to the spatial gradient of the characteristic function.

In this paper, we generalize the relations between the propagator matrix of geodesic
deviation and the second–order spatial derivatives of the characteristic function to an
arbitrary Hamiltonian function. This generalization is important for describing waves
which propagate with different velocities in opposite directions (e.g., electrons in an
electromagnetic field, sound waves in flowing media), but may also be very useful for
analytical calculations in simple media, because the analytical solutions are often derived
for Hamiltonian functions which are not homogeneous (Červený, 2001, secs. 3.4 and 4.8).
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2. Hamiltonian formulation of the geometry of geodesics (rays)

2.1. Hamiltonian function

We consider a smooth manifold (differentiable manifold), and coordinates xi of its
coordinate chart. At each point xi, we have the tangent space containing contravariant
vectors yi and the cotangent space containing covariant vectors yi such as the gradients
of functions. We consider Hamiltonian function H(xi, yj), which is a real–valued
function of coordinates xi and of covariant vector yj from the cotangent space at point
xi, and which is differentiable within its definition domain. The Hamiltonian function
may be represented by any reasonably smooth function of xi and yj.

Hamilton (1837) called the subset of the “unit” vectors yj in the cotangent space
at point xi, defined by equation

H(xi, yj) = C , (1)

the surface of components of normal slowness. Now it is often called the phase–slowness
surface or briefly the slowness surface, sometimes the index surface. In the Finsler
geometry, it is referred to as the figuratrix. Constant C is determined by the meaning
of the Hamiltonian function.

2.2. Action, the characteristic function and the Hamilton–Jacobi equations

The Hamilton–Jacobi equation is a partial differential equation of the first order. The
Hamilton–Jacobi equation for action (distance for general initial conditions, travel time
for general initial conditions) S(xm) reads

H
(

xi, ∂S
∂xj (xm)

)

= C . (2)

Hamilton (1837) also defined the characteristic function (point–to–point distance, two–
point travel time)

V (xm, x̃n) (3)

from point x̃n to point xm. Note that the characteristic function need not be reciprocal,

V (xm, x̃n) 6= V (x̃n, xm) . (4)

The characteristic function satisfies the Hamilton–Jacobi equations

H
(

xm, ∂V
∂xn (xa, x̃b)

)

= C (5)

and

H
(

x̃m,− ∂V
∂x̃n (xa, x̃b)

)

= C (6)

(Hamilton, 1837, eq. C). Note that one of equations (5) and (6) serves as the initial
conditions for the other. The Hamilton–Jacobi equations express the requirement that
the gradient of the action or of the characteristic function is “unit”, see the definition
(1) of unit covariant vectors.
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2.3. Equations of geodesics

Hamilton’s equations (equations of geodesics, equations of rays, ray tracing equations)
read

d

dγ
xi =

∂H

∂yi

(xm, yn) , (7)

d

dγ
yi = −

∂H

∂xi
(xm, yn) . (8)

Hamilton (1837) referred to these equations as the general equations of rays. Hamilton’s
equations (7)–(8) can simply be derived by differentiating the Hamilton–Jacobi equation
(2) or (5) with respect to coordinates xj , and putting yi = ∂V

∂xi (x
a, x̃b). If we

differentiate the Hamilton–Jacobi equation (6) with respect to coordinates x̃j and put
ỹi = − ∂V

∂x̃i (x
a, x̃b), we obtain Hamilton’s equations

d

dγ
x̃i = −

∂H

∂ỹi

(x̃m, ỹn) , (9)

d

dγ
ỹi =

∂H

∂x̃i
(x̃m, ỹn) (10)

for initial point x̃j . The meaning of the independent parameter γ along the geodesic
and the sensitivity of the geodesic to the initial conditions depend on the form of the
Hamiltonian function. Covariant vector yi in (7)–(8), which represents the first–order
partial derivatives of the characteristic function with respect to spatial coordinates,
analogously as covariant vector ỹi in (9)–(10), was called the normal slowness by
Hamilton (1837). Now it is usually called the slowness vector.

Characteristic function V (xm, x̃n) can be calculated by quadrature

V (xm, x̃n) =

∫ γ

0

yr d

dγ
xr dγ (11)

along the geodesic obtained using Hamilton’s equations (7)–(8), or by quadrature

V (xm, x̃n) = −

∫ γ

0

ỹr d

dγ
x̃r dγ (12)

along the geodesic obtained using Hamilton’s equations (9)–(10).

Hamilton’s equations (7)–(8) and (9)–(10) also define function

γ(xm, x̃n) (13)

from point x̃n to point xm, with initial conditions γ(x̃m, x̃n) = 0. Note that this function
need not be reciprocal,

γ(xm, x̃n) 6= γ(x̃n, xm) . (14)

We shall need function γ(xm, x̃n) in the relations derived in this paper.

124



2.4. Equations of geodesic deviation

We define vectors

X i
α =

∂xi

∂γα
(15)

and

Yiα =
∂yi

∂γα
(16)

representing the geodesic deviation corresponding to some parameter γα parametrizing
the initial conditions for the geodesics. Since derivatives d

dγ
and ∂

∂γα commute, the

equations for X i
α and Yiα are obtained by differentiating Hamilton’s equations (7)–(8)

with respect to γα. The resulting Hamiltonian equations of geodesic deviation (paraxial
ray equations, dynamic ray tracing equations) derived by Červený (1972) read

d

dγ
X i

α = H
,i
,j Xj

α + H ,ij Yjα , (17)

d

dγ
Yiα = −H,ij Xj

α − H
,j
,i Yjα , (18)

where

H,ij =
∂2H

∂xi∂xj
(xm, yn) , (19)

H
,i
,j =

∂2H

∂yi∂xj
(xm, yn) , (20)

H ,ij =
∂2H

∂yi∂yj

(xm, yn) . (21)

Equations (17)–(18) may differ for different Hamiltonian functions corresponding to
equivalent Hamilton–Jacobi equations.

2.5. Propagator matrix of geodesic deviation

The propagator matrix of geodesic deviation from point x̃b to point xa is defined by
equation

Π(xa, x̃b) =

(

∂xi

∂x̃j
∂xi

∂ỹj

∂yi

∂x̃j

∂yi

∂ỹj

)

, (22)

where the derivatives with respect to initial conditions x̃j , ỹj for Hamilton’s equations
(7)–(8) are taken at fixed parameter γ along geodesics. The propagator matrix of
geodesic deviation is symplectic and obeys the chain rule,

Π(xa, x̃c) = Π(xa, xb)Π(xc, x̃d) , (23)

where x̃d, xc and xa are the coordinates of three points along a geodesic.
The propagator matrix of geodesic deviation contains all linearly independent

solutions of the equations of geodesic deviation, and may thus be used to calculate
the geodesic deviation for any initial conditions.

The Hamiltonian equations (17)–(18) of geodesic deviation for the propagator
matrix read

d
dγ

Π(xa, x̃b) =

(

H
,i
,j H ,ij

−H,ij −H
,j
,i

)

Π(xa, x̃b) , (24)

with unit initial conditions.
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3. Derivatives of the characteristic function

3.1. First–order spatial derivatives of the characteristic function

The first–order spatial derivatives

∂V

∂xi
= yi , (25)

∂V

∂x̃i
= −ỹi (26)

of the characteristic function result from the solution of Hamilton’s equations (7)–(8)
or (9)–(10) (Hamilton, 1837).

3.2. Relation between the propagator matrix of geodesic deviation and the
second–order spatial derivatives of the characteristic function

The linear ordinary differential Hamiltonian equations (24) of geodesic deviation can be
used to calculate the propagator matrix (22) of geodesic deviation. The second–order
spatial derivatives of the characteristic function can be obtained from the propagator
matrix (22) of geodesic deviation.

The unique relations between the second–order spatial derivatives of characteristic
function (3) and the propagator matrix (22) of geodesic deviation read

(

∂2V

∂xi∂xj
+

1

Γ

∂γ

∂xi

∂γ

∂xj

)

∂xj

∂ỹk

=
∂yi

∂ỹk

, (27)

(

∂2V

∂x̃i∂xj
+

1

Γ

∂γ

∂x̃i

∂γ

∂xj

)

∂xj

∂ỹk

= −δk
i , (28)

∂xi

∂ỹj

(

∂2V

∂x̃j∂x̃k
+

1

Γ

∂γ

∂x̃j

∂γ

∂x̃k

)

=
∂xi

∂x̃k
, (29)

where integral

Γ =

∫ γ

0

(

∂γ

∂xr
H ,rs ∂γ

∂xs

)

dγ (30)

is calculated along the geodesic, and Kronecker delta δk
i represents the components of

the identity matrix. Function γ(xm, x̃n) is defined in Section 2.3. Relations (27)–(29) are
not applicable if integral (30) is equal to zero, which may happen, e.g., if Hamiltonian
function H(xi, yj) is a homogeneous function of the first degree with respect to yn.
Relations (27)–(29) are proved in Section 4.

Relations (27)–(29) represent the generalization of the analogous relations (Klimeš,
2009, eqs. 27–29) in the Finsler geometry, from a homogeneous Hamiltonian function of
the second degree with respect to the spatial gradient of the characteristic function to
an arbitrary Hamiltonian function.

Only three submatrices of the propagator matrix (22) of geodesic deviation are
used in equations (27)–(29). Note that the fourth submatrix of matrix (22) carries no
additional information; it can be calculated from the three submatrices used in equations
(27)–(29) thanks to the symplectic property of the propagator matrix (22) of geodesic
deviation.
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4. Proof of the relations between the propagator matrix of geodesic deviation
and the second–order spatial derivatives of the characteristic function

We first calculate the limits of equations (27)–(29) at the initial point of a geodesic, i.e.
for point xa approaching the initial point x̃a of the geodesic, and prove that equations
(27)–(29) hold at the initial point (Sections 4.3–4.6).

We then assume that equations (27)–(29) are satisfied at point xa of the geodesic,
calculate the derivatives of equations (27)–(29) along the geodesic at point xa, and prove
that these derivatives hold (Sections 4.7–4.9). In this way, we prove that equations (27)–
(29) hold along the whole geodesic.

Before the actual proof of equations (27)–(29), we derive some relations, useful for
further derivations, in Sections 4.1–4.2.

Hereinafter, a subscript following a comma denotes the partial derivative with
respect to coordinate xi, e.g., H,i = ∂H

∂xi or V,i = ∂V
∂xi . A subscript with a tilde

following a comma denotes the partial derivative with respect to initial coordinate x̃a,
e.g., V,ã = ∂V

∂x̃a . A superscript following a comma denotes the partial derivative with

respect to slowness vector component yi, e.g., H ,i = ∂H
∂yi

. The Einstein summation
applies also to the pair of an index without a tilde and an equal index with a tilde.
If not stated otherwise, the Hamiltonian function and its derivatives are taken with
arguments

(

xm, V,n

)

.

4.1. Differentiating the Hamilton–Jacobi equations

We differentiate the Hamilton–Jacobi equation (5) with respect to xi and obtain
equation

H,i

(

xm, V,n

)

+ H ,k
(

xm, V,n

)

V,ki = 0 (31)

(Hamilton, 1837, eqs. Q, I, K). We differentiate the Hamilton–Jacobi equation (5) with
respect to x̃a and obtain equation

H ,k
(

xm, V,n

)

V,kã = 0 (32)

(Hamilton, 1837, eqs. U, I). We differentiate the Hamilton–Jacobi equation (6) with
respect to x̃i and obtain equation

H,i

(

x̃m,−V,ñ

)

− H ,k
(

x̃m,−V,ñ

)

V,k̃ĩ = 0 (33)

(Hamilton, 1837, eqs. X, I, K).
We differentiate equation (31) with respect to xj and obtain equation

H,ij + H
,m
,i V,mj + V,imH

,m
,j + V,imH ,mnV,nj + H ,kV,kij = 0 . (34)

We differentiate equation (31) with respect to x̃a or equation (32) with respect to xj

and obtain equation

V,ãmH
,m
,j + V,ãmH ,mnV,nj + H ,kV,kb̃j = 0 . (35)

We differentiate equation (32) with respect to x̃b and obtain equation

V,ãmH ,mnV,nb̃ + H ,kV,kãb̃ = 0 . (36)
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4.2. Derivatives along geodesics

Equation (7) yields
d
dγ

= H ,k ∂
∂xk . (37)

Equation (34) with (37) yields Riccati equation

d
dγ

V,ij = −H,ij − H
,m
,i V,mj − V,imH

,m
,j − V,imH ,mnV,nj (38)

for V,ij . Equation (35) with (37) yields equation

d
dγ

V,ãj = −V,ãmH
,m
,j − V,ãmH ,mnV,nj , (39)

which represents, for given V,ij , the linear ordinary differential equation for V,ãj .
Equation (36) with (37) yields expression

d
dγ

V,ãb̃ = −V,ãmH ,mnV,nb̃ (40)

for the derivative of V,ãb̃ along the geodesic in terms of V,ãj . Equations (24) of geodesic
deviation read

d
dγ

∂xi

∂x̃j = H
,i
,k

∂xk

∂x̃j + H ,ik ∂yk

∂x̃j , (41)

d
dγ

∂xi

∂ỹj
= H

,i
,k

∂xk

∂ỹj
+ H ,ik ∂yk

∂ỹj
, (42)

d
dγ

∂yi

∂x̃j = −H,ik
∂xk

∂x̃j − H
,k
,i

∂yk

∂x̃j , (43)

d
dγ

∂yi

∂ỹj
= −H,ik

∂xk

∂ỹj
− H

,k
,i

∂yk

∂ỹj
. (44)

4.3. Propagator matrix of geodesic deviation at the initial point of a geodesic

From the Hamiltonian equations (24) of geodesic deviation, we see that
(

∂xi

∂x̃j
∂xi

∂ỹj

∂yi

∂x̃j

∂yi

∂ỹj

)

=

(

δi
j +H

,i
,jγ H ,ijγ

−H,ijγ δ
j
i −H

,j
,i γ

)

+ O(γ2) . (45)

Since
H ,i
(

xm, V,n(xp, x̃q)
)

= H ,i
(

x̃m, V,n(xp, x̃q)
)

+ O(γ1) , (46)

we do not need to distinguish the Hamiltonian function and its derivatives at point xm

and initial point x̃m in Sections 4.3–4.6.

4.4. Equation (27) at the initial point of a geodesic

When point xa approaches initial point x̃a, the second derivatives V,ij(x
a, x̃b) of the

characteristic function with respect to xa increase with [γ(xa, x̃b)]−1 according to
expansion

V,ij(x
m, x̃n) = Tij [γ(xm, x̃n)]−1 + O(γ0) , (47)

where matrix Tij differs for different geodesics (rays).
We assume that γ,rH

,rsγ,s is not equal to zero, and approximate definition (30) by

Γ = γ,rH
,rsγ,sγ + O(γ2) . (48)

We insert expansions (45), (47) and (48) into the left–hand side of relation (27), and
arrive at approximation

(

∂2V

∂xi∂xj
+

1

Γ

∂γ

∂xi

∂γ

∂xj

)

∂xj

∂ỹk

=

(

Tij +
γ,iγ,j

γ,rH ,rsγ,s

)

H ,jk + O(γ1) . (49)
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The relation between a small coordinate difference between points x̃a and xa and the
independent parameter γ along the geodesic may be approximated by expansion

xi − x̃i = H ,i
(

x̃m, V,n(xp, x̃q)
)

γ(xr, x̃s) + O(γ2) (50)

resulting from the first Hamilton’s equation (7). Differentiating approximation (50)
with respect to xj and considering expansion (47), we obtain relation

δi
j = H ,irTrj + H ,iγ,j + O(γ1) . (51)

Inserting relation (51) into approximation (49), we obtain approximation
(

∂2V

∂xi∂xj
+

1

Γ

∂γ

∂xi

∂γ

∂xj

)

∂xj

∂ỹk

= δk
i + γ,i

(

γ,jH
,jk

γ,rH ,rsγ,s

− H ,k

)

+ O(γ1) . (52)

The definition of γ,j together with Hamilton’s first equation (7) yield identity

γ,jH
,j(xm, yn) = 1 . (53)

Identity (53) yields
(

γ,jH
,jk

γ,rH ,rsγ,s

− H ,k

)

γ,k = 0 . (54)

Multiplying relation (51) by γ,i and considering relation (53), we obtain relation

γ,iH
,irTrj = O(γ1) . (55)

Inserting expansion (47) into equation (31), we obtain the approximate relation

TirH
,r = O(γ1) . (56)

Approximations (55) and (56) yield
(

γ,jH
,jk

γ,rH ,rsγ,s

− H ,k

)

Tkl = O(γ1) . (57)

We assume that matrix Tij has only one zero eigenvalue which corresponds to eigenvector
H ,j , see relation (56). Since vector H ,j is not perpendicular to γ,j, see relation (53),
relations (57) and (54) result in

γ,jH
,jk

γ,rH ,rsγ,s

− H ,k = O(γ1) . (58)

Approximation (52) of the left–hand side of relation (27) then reads
(

∂2V

∂xi∂xj
+

1

Γ

∂γ

∂xi

∂γ

∂xj

)

∂xj

∂ỹk

= δk
i + O(γ1) . (59)

Approximation (45) of the right–hand side of relation (27) reads

∂yi

∂ỹk

= δk
i + O(γ1) . (60)

Relation (27) is thus satisfied for small distances between x̃a and xa with the accuracy
of O(γ1), and is thus satisfied for xa → x̃a.
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4.5. Equation (28) at the initial point of a geodesic

When point xa approaches initial point x̃a, the second derivatives V,̃ij(x
a, x̃b) of the

characteristic function with respect to xa increase with [γ(xa, x̃b)]−1 according to
expansion

V,̃ij(x
m, x̃n) = Tĩj [γ(xm, x̃n)]−1 + O(γ0) , (61)

where matrix Tĩj differs for different geodesics (rays).
We assume that γ,rH

,rsγ,s is not equal to zero, and insert expansions (45), (61)
and (48) into the left–hand side of relation (28), and arrive at approximation

(

∂2V

∂x̃i∂xj
+

1

Γ

∂γ

∂x̃i

∂γ

∂xj

)

∂xj

∂ỹk

=

(

Tĩj +
γ,̃iγ,j

γ,rH ,rsγ,s

)

H ,jk + O(γ1) . (62)

Differentiating approximation (50) with respect to x̃j and considering expansion (61),
we obtain relation

−δi
j = H ,irTrj̃ + H ,iγ,j̃ + O(γ1) . (63)

Inserting relation (63) into approximation (62), we obtain approximation
(

∂2V

∂x̃i∂xj
+

1

Γ

∂γ

∂x̃i

∂γ

∂xj

)

∂xj

∂ỹk

= −δk
i + γ,̃i

(

γ,jH
,jk

γ,rH ,rsγ,s

− H ,k

)

+ O(γ1) . (64)

Considering approximate identity (58), approximation (64) of the left–hand side of
relation (28) reads

(

∂2V

∂x̃i∂xj
+

1

Γ

∂γ

∂x̃i

∂γ

∂xj

)

∂xj

∂ỹk

= −δk
i + O(γ1) . (65)

Relation (28) is thus satisfied for small distances between x̃a and xa with the accuracy
of O(γ1), and is thus satisfied for xa → x̃a.

4.6. Equation (29) at the initial point of a geodesic

When point xa approaches initial point x̃a, the second derivatives V,̃ij̃(x
a, x̃b) of the

characteristic function with respect to xa increase with [γ(xa, x̃b)]−1 according to
expansion

V,̃ij̃(x
m, x̃n) = Tĩj̃ [γ(xm, x̃n)]−1 + O(γ0) , (66)

where matrix Tĩj̃ differs for different geodesics (rays).
Definition of γ,j̃ together with Hamilton’s first equation (9) yield identity

γ,j̃H
,j(x̃m, ỹ,n) = −1 . (67)

Since identities (53) and (67) apply to all directions of H ,j(xm, yn) = H ,j(x̃m, ỹ,n) +
O(γ1), we obtain approximation

γ,j̃ = −γ,j + O(γ1) (68)

for short distances between x̃m and xm, and approximate relation (48) by

Γ = γ,r̃H
,rsγ,s̃γ + O(γ2) . (69)

Here we assume that γ,r̃H
,rsγ,s̃ is not equal to zero. We insert expansions (45), (66)

and (69) into the left–hand side of relation (29), and arrive at approximation

∂xi

∂ỹj

(

∂2V

∂x̃j∂x̃k
+

1

Γ

∂γ

∂x̃j

∂γ

∂x̃k

)

= H ,ij

(

Tj̃k̃ +
γ,j̃γ,k̃

γ,r̃H ,rsγ,s̃

)

+ O(γ1) . (70)
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The relation between a small coordinate difference between points x̃a and xa and the
independent parameter γ along the geodesic may be approximated by expansion

x̃i − xi = −H ,i
(

x̃m,−V,ñ(xp, x̃q)
)

γ(xr, x̃s) + O(γ2) (71)

resulting from Hamilton’s first equation (9). Differentiating approximation (71) with
respect to x̃j and considering expansion (66), we obtain relation

δi
j = H ,irTr̃j̃ − H ,iγ,j̃ + O(γ1) . (72)

Inserting relation (72) into approximation (70), we obtain approximation

∂xi

∂ỹj

(

∂2V

∂x̃j∂x̃k
+

1

Γ

∂γ

∂x̃j

∂γ

∂x̃k

)

= δi
k +

(

H ,ijγ,j̃

γ,r̃H ,rsγ,s̃

+ H ,i

)

γ,k̃ + O(γ1) . (73)

Multiplying relation (72) by γ,̃i and considering relation (67), we obtain relation

γ,̃iH
,irTr̃j̃ = O(γ1) . (74)

Inserting expansion (47) into equation (33), we obtain approximate relation

Tãr̃H
,r = O(γ1) . (75)

Analogously as we derived approximate identity (58) using relations (53), (55) and (56),
we may derive approximation

H ,ijγ,j̃

γ,r̃H ,rsγ,s̃

+ H ,i = O(γ1) (76)

using approximate relations (67), (74) and (75).
Approximation (73) of the left–hand side of relation (29) then reads

∂xi

∂ỹj

(

∂2V

∂x̃j∂x̃k
+

1

Γ

∂γ

∂x̃j

∂γ

∂x̃k

)

= δi
k + O(γ1) . (77)

Approximation (45) of the right–hand side of relation (29) reads

∂xi

∂x̃k
= δi

k + O(γ1) . (78)

Relation (29) is thus satisfied for small distances between x̃a and xa with the accuracy
of O(γ1), and is thus satisfied for xa → x̃a.

4.7. Derivative of (27)

We denote
Fij = Γ−1γ,iγ,j , (79)

and express the derivative of equation (27) along the geodesic using equations (38), (42)
and (44),

(

− H,ij − H
,m
,i V,mj − V,imH

,m
,j − V,imH ,mnV,nj + d

dγ
Fij

)

∂xj

∂ỹk

+
(

V,ij + Fij

)(

H ,j
,r

∂xr

∂ỹk
+ H ,jr ∂yr

∂ỹk

)

= −H,ir
∂xr

∂ỹk
− H

,r
,i

∂yr

∂ỹk
. (80)

We collect the terms containing ∂xj

∂ỹk
and the terms containing

∂yj

∂ỹk
,

(

− H
,m
,i V,mj − V,imH ,mnV,nj + FirH

,r
,j + d

dγ
Fij

)

∂xj

∂ỹk

+
(

V,irH
,rj + FirH

,rj + H
,j
,i

] ∂yj

∂ỹk
= 0 . (81)
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We insert (27) for
∂yj

∂ỹk
,

(

− H
,m
,i V,mj − V,imH ,mnV,nj + FirH

,r
,j + d

dγ
Fij

)

∂xj

∂ỹk

+
(

V,irH
,rs + FirH

,rs + H
,s
,i

)(

V,sj + Fsj

)

∂xj

∂ỹk
= 0 . (82)

We now execute the summation in (82) and arrive at
[

d
dγ

Fij + Fir

(

H
,r
,j + H ,rsV,sj

)

+
(

H
,r
,i + H ,rsV,si

)

Frj + FirH
,rsFsj

]

∂xj

∂ỹk
= 0 . (83)

We insert (79) into (83) and consider that d
dγ

γ,i = γ,irH
,r,

{

− Γ−2γ,iγ,j
d
dγ

Γ + Γ−1γ,i

[

γ,jrH
,r + γ,r

(

H
,r
,j + H ,rsV,sj

)]

+ Γ−1
[

γ,irH
,r + γ,r

(

H
,r
,i + H ,rsV,si

)]

γ,j + Γ−2γ,iγ,rH
,rsγ,sγ,j

}

∂xj

∂ỹk
= 0 . (84)

Terms
γ,irH

,r + γ,r

(

H
,r
,i + H ,rsV,si

)

= ∂
∂xi

[

γ,rH
,r
(

xm, V,n(xp, x̃q)
)]

(85)

are zero because of identity (53),

γ,irH
,r + γ,r

(

H
,r
,i + H ,rsV,si

)

= 0 . (86)

Equation (84) with (86) reads

Γ−2γ,i

(

d
dγ

Γ − γ,rH
,rsγ,s

)

γ,j
∂xj

∂ỹk
= 0 , (87)

which is satisfied as a consequence of definition (30).

4.8. Derivative of (28)

We denote
Fĩj = Γ−1γ,̃iγ,j , (88)

and express the derivative of equation (28) along the geodesic using equations (39) and
(42),
(

− V,̃imH
,m
,j − V,̃imH ,mnV,nj + d

dγ
Fĩj

)

∂xj

∂ỹk
+
(

V,̃ij + Fĩj

)(

H ,j
,r

∂xr

∂ỹk
+ H ,jr ∂yr

∂ỹk

)

= 0 . (89)

We collect the terms containing ∂xj

∂ỹk
and the terms containing

∂yj

∂ỹk
,

(

− V,̃imH ,mnV,nj + FĩrH
,r
,j + d

dγ
Fĩj

)

∂xj

∂ỹk
+
(

V,̃irH
,rj + FĩrH

,rj
] ∂yj

∂ỹk
= 0 . (90)

We insert (27) for
∂yj

∂ỹk
,

(

− V,̃imH ,mnV,nj + FĩrH
,r
,j + d

dγ
Fĩj

)

∂xj

∂ỹk

+
(

V,̃irH
,rs + FĩrH

,rs
)(

V,sj + Fsj

)

∂xj

∂ỹk
= 0 . (91)

We now execute the summation in (91) and arrive at
[

d
dγ

Fĩj + Fĩr

(

H
,r
,j + H ,rsV,sj

)

+ V,̃irH
,rsFsj + FĩrH

,rsFsj

]

∂xj

∂ỹk
= 0 . (92)

We insert (88) into (92) and consider that d
dγ

γ,i = γ,irH
,r and d

dγ
γ,̃i = γ,̃irH

,r,
{

− Γ−2γ,̃iγ,j
d
dγ

Γ + Γ−1γ,̃i

[

γ,jrH
,r + γ,r

(

H
,r
,j + H ,rsV,sj

)]

+ Γ−1
[

γ,̃irH
,r + γ,rH

,rsV,sĩ

]

γ,j + Γ−2γ,̃iγ,rH
,rsγ,sγ,j

}

∂xj

∂ỹk
= 0 . (93)
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Term
γ,̃irH

,r + γ,rH
,rsV,sĩ = ∂

∂x̃i

[

γ,rH
,r
(

xm, V,n(xp, x̃q)
)]

(94)

is zero because of identity (53),

γ,̃irH
,r + γ,rH

,rsV,sĩ = 0 . (95)

Equation (93) with identities (86) and (95) reads

Γ−2γ,̃i

(

d
dγ

Γ − γ,rH
,rsγ,s

)

γ,j
∂xj

∂ỹk
= 0 , (96)

which is satisfied as a consequence of definition (30).

4.9. Derivative of (29)

We denote
Fĩj̃ = Γ−1γ,̃iγ,j̃ , (97)

and express the derivative of equation (29) along the geodesic using equations (40), (41)
and (42),

∂xi

∂ỹj

(

d
dγ

Fj̃k̃−V,j̃mH ,mnV,nk̃

)

+
(

H ,i
,r

∂xr

∂ỹj
+H ,ir ∂yr

∂ỹj

)(

V,j̃k̃+Fj̃k̃

)

= H ,i
,r

∂xr

∂x̃k +H ,ir ∂yr

∂x̃k . (98)

Considering equation (29), the terms containing H ,i
,r cancel out,

∂xi

∂ỹj

(

d
dγ

Fj̃k̃ − V,j̃mH ,mnV,nk̃

)

+ H ,ir ∂yr

∂ỹj

(

V,j̃k̃ + Fj̃k̃

)

= H ,ir ∂yr

∂x̃k . (99)

We multiply equation (99) from the right–hand side by matrix ∂xl

∂ỹk
,

∂xi

∂ỹj

(

d
dγ

Fj̃k̃ − V,j̃mH ,mnV,nk̃

)

∂xl

∂ỹk
+ H ,ir ∂yr

∂ỹj

(

V,j̃k̃ + Fj̃k̃

)

∂xl

∂ỹk
= H ,ir ∂yr

∂x̃k
∂xl

∂ỹk
. (100)

We insert equation (29) in order to remove (V,j̃k̃ + Fj̃k̃),

∂xi

∂ỹj

(

d
dγ

Fj̃k̃ − V,j̃mH ,mnV,nk̃

)

∂xl

∂ỹk
+ H ,ir ∂yr

∂ỹj

∂xl

∂x̃j = H ,ir ∂yr

∂x̃k
∂xl

∂ỹk
. (101)

We apply the consequence
∂yi

∂ỹr

∂xk

∂x̃r − ∂yi

∂x̃r
∂xk

∂ỹr
= δk

i (102)

of the symplectic property of propagator matrix (22):

∂xi

∂ỹj

(

d
dγ

Fj̃k̃ − V,j̃mH ,mnV,nk̃

)

∂xl

∂ỹk
+ H ,il = 0 . (103)

We add H ,mn multiplied from both sides by the left–hand side of equation (28), and
subtract H ,mn multiplied from both sides by the right–hand side of equation (28):

∂xi

∂ỹj

(

d
dγ

Fj̃k̃ + F,j̃mH ,mnF,nk̃ + V,j̃mH ,mnF,nk̃ + F,j̃mH ,mnV,nk̃

)

∂xl

∂ỹk
= 0 . (104)

We insert (97) into (104) and consider that d
dγ

γ,̃i = γ,̃irH
,r:

∂xi

∂ỹj

[

Γ−2γ,j̃

(

− d
dγ

Γ + γ,rH
,rsγ,s

)

γ,k̃ +
(

γ,j̃rH
,r + V,j̃rH

,rsγ,s

)

γ,k̃

+ γ,j̃

(

γ,k̃rH
,r + V,k̃rH

,rsγ,s

)]

∂xl

∂ỹk
= 0 . (105)

Equation (105) with identity (95) reads

−Γ−2 ∂xi

∂ỹj
γ,j̃

(

d
dγ

Γ − γ,rH
,rsγ,s

)

γ,k̃
∂xl

∂ỹk
= 0 , (106)

which is satisfied as a consequence of definition (30).
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5. Conclusions

The propagator matrix (22) of geodesic deviation contains all the linearly independent
solutions of the equations of geodesic deviation. It can be calculated using the
Hamiltonian equations (17)–(18) of geodesic deviation.

The derived general relations (27)–(29) between the propagator matrix (22) of
geodesic deviation and the second–order spatial derivatives of the characteristic function
are applicable to the high–frequency approximations of propagation of various waves
(e.g., elastic, electromagnetic, Dirac), to the Finsler geometry, to the Riemann geometry,
and to their various applications such as general relativity.
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