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Summary

Time-harmonic, homogeneous and inhomogeneous plane waves propagating in isotropic
and anisotropic viscoelastic media are investigated. The componental specification of the
slowness vector p is used, in which the slowness vector p is computed from its known
projection p” to an arbitrarily chosen plane Y. The vectors p and p* are, in general,
complex-valued. The most important step in the procedure consists in the determina-
tion of the component o of the slowness vector p to the normal n* to ¥. For general
anisotropic viscoelastic media, the component o is a root of an algebraic equation of the
sixth degree, with complex-valued coefficients. For isotropic viscoelastic media, the alge-
braic equation of the sixth degree factorizes to simple quadratic equations. For SH plane
waves propagating in the plane of symmetry of a monoclinic (orthorhombic, hexagonal)
viscoelastic medium it also factorizes providing a quadratic equation for SH waves. The
componental specification of the slowness vector plays an important role in the solution
of the problem of the reflection/transmission of plane waves at a plane interface between
two viscoelastic anisotropic media.
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1 Introduction

In this paper, we study homogeneous and inhomogeneous time-harmonic plane waves,
propagating in isotropic or anisotropic, viscoelastic or elastic media. We consider a ho-
mogeneous or inhomogeneous plane wave with the complex-valued slowness vector p,
specified by the so-called componental specification with respect to some arbitrarily cho-
sen plane . The complete slowness vector p, however, is not known, only its complex-
valued projection p* to the plane ¥ is given. The goal is to determine the complete
complex-valued slowness vector p of the plane wave under consideration from the vector
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p” situated in the plane ¥. The most important step in the procedure is the determination
of the unknown component o of the slowness vector to the normal n* to the plane X.
This problem plays an important role in various seismological applications, particularly
in the problem of reflection and transmission of plane waves at a planar interface and in
the problem of displacement-stress propagator matrices.

The componental specification of the slowness vector was briefly explained by Cerveny
and Psencik (2005a,b). In the componental specification, the complex-valued slowness
vector p is given by the relation p = on® 4 p*, where n* is a real-valued unit normal to
the plane ¥, and p” is the projection of the slowness vector p to the plane 3. The quantity
o, representing the component of the slowness vector to n*, is sought as a function of the
known p*. Both o and p* may be, in general, complex-valued.

The componental specification of the slowness vector has been broadly used in the
solution of reflection-transmission problem of plane waves at a plane interface between
two homogeneous perfectly elastic isotropic or anisotropic media. For anisotrop-
ic media see, e.g., Fedorov (1968), Musgrave (1970), Gajewski and PSencik (1987), Helbig
(1994). For a review, see Cerveny (2001, Section 5.4.7). It has also been used in the com-
putation and application of displacement-stress propagator matrices in perfectly elastic
isotropic or anisotropic 1-D media, see, e.g., Kennett (1983, 2001), Chapman (1994,
2004), Thomson (1996a,b). A very similar approach, called usually the Stroh formalism
(Stroh, 1962), has been used in applied mathematics and mechanics (Shuvalov, 2001).

For isotropic and anisotropic viscoelastic media, the mixed specification of the slow-
ness vector has been also used (Cerven}'f and Psencik, 2005a,b). The mixed specification
corresponds to the componental specification, for which the known vector p* is purely
imaginary. The choice of purely imaginary p> implies that the plane ¥ represents the
wavefront of the plane wave under consideration. It was proved that the slowness vec-
tor p of any inhomogeneous or homogeneous plane wave propagating in an isotropic or
anisotropic, viscoelastic or perfectly elastic medium without interfaces (from now on, we
refer to such media as homogeneous) may be described by this specification. Analogously,
any purely imaginary vector p* yields an inhomogeneous or homogeneous (if p* = 0)
plane wave propagating in a medium under consideration.

It is possible to show that any plane wave, either inhomogeneous or homogeneous,
can be alternatively described by the componental or mixed specification of the slowness
vector. The mixed specification, in which the plane ¥ represents the wavefront of the
plane wave under consideration, is more suitable for the investigation of basic properties
of homogeneous and inhomogeneous plane waves in unbounded media. From the compu-
tational point of view, it is simpler and more straightforward, as it is not connected with
problems of the specification of correct signs of square roots in the complex plane. The
important physical quantities of the plane wave, like phase velocity, attenuation angle,
etc., are obtained easily. The advantage of componental specification is that it gives di-
rectly the component o of the slowness vector p to the normal of an arbitrarily chosen
plane ¥, not necessarily coinciding with the wavefront. This is the main reason why
the componental specification is more useful in the solution of the reflection/transmission
problem at an arbitrarily situated and oriented planar interface X.
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In this paper, we discuss the determination of the component ¢ of the complex-valued
slowness vector p to the normal of an arbitrarily chosen plane ¥ in an anisotropic or
isotropic, viscoelastic or perfectly elastic medium, assuming the vector p* situated in the
plane ¥ being known. In Section 2, we describe briefly the properties of homogeneous
and inhomogeneous plane waves, propagating in anisotropic viscoelastic media, and give
expressions for their phase velocity C and the attenuation angle 7 (also called the inho-
mogeneity angle). We describe briefly the mixed specification of the slowness vector. In
Section 3, we use the componental specification of the slowness vector, and derive ex-
pressions for the component o of the slowness vector p to the normal of the plane X.
We also present expressions for the unit vectors n” and n?, specifying directions of the
propagation and attenuation vectors. Further, we present expressions for the phase veloc-
ity C and the attenuation angle v of the relevant homogeneous or inhomogeneous plane
wave specified on the plane Y. We also present relations between componental and mixed
specifications in a homogeneous medium. In Section 4, we discuss certain special choices
of the complex-valued vector p* in the componental specification, such as the real-valued
p”, the imaginary-valued p*, and the so-called coplanar case. By the “coplanar case”, we
understand here the case, in which the unit normal n* to the plane ¥ and the vectors Rep
and Imp are all situated in one plane. If this is not the case, we speak of non-coplanar
case. In Section 5, we pay attention to isotropic viscoelastic media and to the case of SH
plane waves propagating in a plane of symmetry of a monoclinic (including orthorhombic
and hexagonal) medium, for which all expressions can be written in a simple analytical
form. In Section 6, we discuss applications of the componental and mixed specification
of the slowness vector in the problem of reflection/transmission of waves at a plane in-
terface separating anisotropic or isotropic viscoelastic media. In Section 7, we offer some
concluding remarks.

2 Inhomogeneous plane waves
in anisotropic viscoelastic media

We discuss time-harmonic plane waves propagating in homogeneous anisotropic viscoelas-
tic media, and describe them in the following way:

ui(z;,t) = alUj exp[—iw(t — pnzn)] - (1)

Here u;, U;, and p; are Cartesian components of the complex-valued displacement vector u,
the polarization vector U and the slowness vector p. The symbol a denotes the complex-
valued scalar amplitude. The anisotropic viscoelastic medium under consideration is
specified by complex-valued density-normalized viscoelastic moduli a;j;, satisfying the
symmetry relations
ikl = Qjikl = Qijik = Qklij - (2)
We use the notation
Qijkl = agkl - iailjkl ; (3)
with the sign “—” of the imaginary part. This sign is related to the minus sign in the
exponential factor of (1). In the Voigt notation, the moduli aff; — iaj;, are replaced by
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the elements Ay —iAl; of the 6 x 6 complex-valued symmetric matrix A" —iA’. We
assume that the real-valued matrix A% is positive definite and A’ is positive definite or
zero. The density-normalized viscoelastic moduli a;j;; and the elements A,g are frequency
dependent. We, however, do not write a;;x(w) or A,s(w) with the argument w, because
we consider arbitrary, but fixed frequency w > 0.

Assuming the validity of the correspondence principle (Carcione, 2007), the plane wave
(1) must satisfy the time-harmonic equation of motion. This allows us to determine U;
and p;. The equation of motion yields three linear algebraic equations for U;,

U = U; 1=1,2,3, (4)
where I is the 3 x 3 generalized Christoffel matrix, with elements
Uik = aijup;pr - (5)
The condition of solvability of the system of equations (4) for Uy, U, Us is as follows:
det[aijripjpr — dir] =0 . (6)

The slowness vector p satisfying the constraint relation (6) can be used to solve the
system of linear equations (4) and determine the corresponding polarization vector U.
The complex-valued scalar amplitude ¢ may be chosen freely.

Instead of the slowness vector p, the wave vector k = wp has been often used in
seismological literature. As we consider only time-harmonic waves with the constant
circular frequency w, the difference between p and k is only formal, and we use only p in
the following.

The complex-valued slowness vector p can be expressed in the following form:
p=P+iA, (7)

where the vectors P = Rep and A = Imp are real-valued; P is called the propagation
vector and A the attenuation vector. We introduce real-valued unit vectors n” and n*
along P and A as

n” —P/IP|, n'=A/Al. 8)

The plane wave is called homogeneous if n” = n“, and inhomogeneous if n” # n”.

We define the attenuation angle 7 (also often called the inhomogeneity angle) as a non-
oriented, non-negative angle made by real-valued unit vectors n” and n“:

cosy=n"-n'=P.A/|P||A]|. 9)

Consequently, the plane wave is homogeneous for v = 0, and inhomogeneous for v > 0. For
inhomogeneous plane waves, the plane specified by n” and n? is called the propagation-
attenuation plane. The phase velocity C of a homogeneous or inhomogeneous plane wave
is defined as

C=1/|P], (10)

see Cerveny and Psencik (2005a).
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Any plane wave, homogeneous or inhomogeneous, propagating in a homogeneous
anisotropic viscoelastic medium is fully determined if its complex-valued slowness vec-
tor p, complex-valued polarization vector U and the complex-valued scalar amplitude a
are known. As the scalar amplitude ¢ may be chosen arbitrarily and the polarization
vector U can be simply calculated from (4) once p is known, the decisive role in the
computation of plane waves is played by the slowness vector p satisfying the constraint
relation (6). Several methods can be used for this purpose. One of them is the mixed
specification of the slowness vector (Cerven}'f and Psencik, 2005a,b).

The mixed specification of the slowness vector has the form
p=c"n+iDm with n-m=0. (11)

Here n and m are two mutually perpendicular unit vectors, and D is a real-valued scalar,
D € (=00, 00), called the inhomogeneity parameter. For n, m and D given, the complex-
valued scalar 0" can be determined from equation

det[aijkl(Uan + iij)(O'WTLl + lel) — 51}9] =0. (12)

Eq.(12) follows from (6), into which we inserted (11). The physical meaning of parameters
n, m and D is as follows: The unit vector n is perpendicular to the wavefront, i.e., parallel
to the propagation vector and identical with n”. The unit vector m, perpendicular to
n, defines (together with n) the propagation-attenuation plane, in which vectors n” and
n? are situated. It is, however, different from n*, as it is perpendicular to n. The
inhomogeneity parameter D is a measure of inhomogeneity of the plane wave in the
propagation-attenuation plane. For D = 0, the plane wave is homogeneous, and for
D # 0 inhomogeneous. The complex-valued scalar ¢" represents the component of the

slowness vector p to the vector n.

The slowness vector p of any inhomogeneous plane wave can be uniquely specified by
unit vectors n and m and by the inhomogeneity parameter D # 0. Other way round, any
parameters n, m and D # 0 specify uniquely one slowness vector of an inhomogeneous
plane wave.

The mixed specification of the slowness vector can be used for the investigation of ho-
mogeneous and inhomogeneous plane waves propagating in unbounded viscoelastic media
without interfaces. For plane waves specified at an arbitrary plane ¥ by the vector p~, it
is more suitable to use the componental specification of the slowness vector.

3 Componental specification of the slowness vector

3.1 Definition and properties of the componental specification

The componental specification of the slowness vector is particularly useful in the solution
of reflection /transmission problems. Let us emphasize that any slowness vector expressed
in terms of the componental specification at an arbitrary plane ¥ can be also expressed
in terms of the mixed specification and vice versa.
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In the componental specification of the complex-valued slowness vector p at an arbi-
trarily chosen plane ¥, we proceed as follows. We denote the real-valued unit normal to
¥ by n*, and specify p in the following way:

p=on”+p*, with p¥ -n*=0. (13)

Here p” is a complex-valued vector, situated in the plane ¥. The unit vector n* and the
vector p~ are assumed to be known, but the complex-valued scalar quantity o is to be
determined from the constraint relation (6). Inserting (13) into (6) yields a polynomial
equation of the sixth degree for o with complex-valued coefficients, which reads:

det[aijkl(anf + p]E)(anlE + plE) — 51}9] =0. (14)

This is a basic equation of this paper. It has always six generally complex-valued roots
o. These roots correspond to P, S1 and S2 waves, propagating in opposite directions.
In some special cases, the equation may factorize into two equations, one of the second
degree and one of the fourth degree or to three equations of the second degree.

Once the roots o of equation (14) are found, we can determine the propagation vector
P and the attenuation vector A from:

P = n”Rec + Rep”, A =n"Imo + Imp” . (15)
The magnitudes of these vectors are:

[P| = [(Reo)’ + (Rep”)(Rep™)]'?
Al = [(Imo)® + (Imp”)(Tmp™)]'/2 . (16)
The directions of vectors P and A are given by real-valued unit vectors n” and n”, see
(8),
n” = (n"Reo + Rep”)/[(Rec)? + (Rep™)(Rep™)]/? |
n? = (n¥Tmo 4 Imp®)/[(Tmo)? + (Tmp®) (Tmp®)]*/2 . (17)

The phase velocity C of the plane wave under consideration is given by the relation
C =1/|P|, see (10):
C = 1/[(Rec)? + (Rep”)(Rep”)]"/? . (18)

The attenuation angle v is given by the relation cosy = n” - n*, so that

(Reo)(Imo) + (Rep®) (Imp*)
[(Reo)” + (Rep”)(Rep¥)]'/?[(Imo)* + (Imp”) (Imp*)]'/>

cosy = (19)

3.2 Relations between componental and mixed specifications of
the slowness vector

In a homogeneous medium, the componental and mixed specifications of the slowness
vector p can be used alternatively; one of them can be expressed in terms of the other.

190



The plane ¥ used in the componental specification can be selected arbitrarily. The relevant
transformation does not require any solution of the algebraic equation of the sixth degree.

We use the slowness vector p specified by the componental specification in the form
(13) with o being a solution of the algebraic equation (14), and by the mixed specification
in the form (11) with 0" being a solution of the algebraic equation (12). We thus require
that the expressions for the slowness vector p in both specifications are equal:

c"n +iDm = on” + p” . (20)

In the following, we shall use this equation to find transformations from mixed to com-
ponental specification and back.

a) Transformation from componental to mixed specification

In this case, the complex-valued scalar quantity o, real-valued unit vector n* and

complex-valued vector p* are assumed to be known. Complex-valued scalar quantity o",
mutually perpendicular, real-valued unit vectors n and m, and the real-valued scalar D
are to be determined.

The unit vector n specifies the orientation of the propagation vector and it thus reads

n=n", (21)
where n” is given in (17). Multiplying (20) by n”, we obtain o',
o = (on* + p¥) -n” . (22)
Equation (20) then yields
Dm = Im(on” — ¢""'n” + p¥) . (23)

From (23), we can determine both m and D separately:

m = Im(on* —¢"'n” + p¥)/[Im(on® — c"'n” + p¥)|, (24)
D = |Im(on” —c"n" +p¥)|. (25)

Equations (21)—(25) allow to express the slowness vector (13) in mixed specification. In
(24)-(25), we can change signs of both m and D, without affecting the slowness vector.

As we can see in (22), we do not need to solve the algebraic equation of the sixth degree
for o if we wish to transform the componental specification to the mixed specification
of the slowness vector, for which o is known. Moreover, we do not need to seek the unit
vector n perpendicular to the wavefront; we obtain it using (21).

b) Transformation from mixed to componental specification

In this case, the complex-valued scalar quantity o', mutually perpendicular, real-
valued unit vectors n and m, and real-valued scalar D are assumed to be known. In
addition, we must know the real-valued unit vector n*, which specifies the plane ¥, to
which n* is perpendicular. The complex-valued scalar quantity o and the complex-valued
vector p” are to be computed.
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The transformation is now simpler than in the previous cases. Multiplying (20) by

known n*, we obtain
o= (c"n+iDm)-n* . (26)

From (20), we further obtain
p”=0"n—-on” +iDm . (27)

Equations (26) and (27) allow to express the slowness vector (11) in the componental
form. Equations for the componental specification of the slowness vector strongly depend
on the position of the plane ¥, specified by the unit vector n* perpendicular to ¥.

c¢) Transformation from one componental to another componental specification

We consider two planes ¥; and ¥, with unit normals n' and n?, and a slowness

vector in the componental specifications related to these planes. We wish to transform
the componental specifications from the plane ¥; to the plane ¥, for the given fixed
slowness vector. Then

on' +p”' =oyn’® +p*? . (28)

1

Here oy, n' and p”' corresponds to the plane ¥;, 09, n? and p>? to the plane ¥,.

Assume that the quantities oy, n; and p*' are known. To determine the relevant
quantities for $2, we must also give n?. From (28), we obtain

oy = (oyn' +p”') -n” . (29)

Eq. (28) also yields

p>? = o' — oyn® + p=t . (30)

4 Special choices of the vector p~

Equations (4), (6), (13)-(19) are general and valid for any anisotropic or isotropic, vis-
coelastic or perfectly elastic medium. They are also valid for arbitrarily chosen plane 3,
and for arbitrary complex-, real- or imaginary-valued vector p*, specified at . In this
section, we consider an arbitrary medium, but special choices of the vector p*.

4.1 Real-valued p*

We denote by e a real-valued unit vector arbitrarily situated in the plane 3, and by S a
real-valued apparent slowness along e. We define the vector p* by the relation:

p~ = Se. (31)
Using (13), the slowness vector p reads

by

— on” + Se with n*-e=0. 32
p )
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Here o is a generally complex-valued root of the algebraic equation of the sixth degree
with complex-valued coefficients

det[aijkl(anf + Sej)(anlz + Sel) — 51}9] =0. (33)
The propagation and attenuation vectors P and A read
P =n"Rec + Se, A =n"Tmo. (34)

An important property of the choice of the real-valued p* is that the attenuation vector
A is always perpendicular to the plane ¥ (parallel to n*). The attenuation vector A
is perpendicular to ¥ always when Imp® = 0. In all other cases, the attenuation vector
A deviates from n*. This holds for arbitrary medium, viscoelastic or perfectly elastic,
anisotropic or isotropic, and for e arbitrarily situated in 3. Note that Imo may be different
from zero even in perfectly elastic media (evanescent waves).

The magnitudes of vectors P and A and the expressions for n” and n* follow directly
from inserting Imp* = 0 and Rep” = Se to (16) and (17). For n* we get from (17),

n? = e4n”, where ¢4 = Imo/|Imo|. The phase velocity C and the attenuation angle
read
C = 1/[(Reo)? + S?)'/? (35)
R
COS7Y = €4 °o (36)

[(Reo)2 + 82172 °

4.2 Imaginary-valued p~

We again denote by e a real-valued unit vector situated in 3, and by D an arbitrary
real-valued scalar. Then the imaginary-valued vector p* has the form:

p~ =iDe . (37)
Using (13), the complex-valued slowness vector p reads
p=on” +iDe, with n*-e=0. (38)

Here o is a generally complex-valued root of the algebraic equation of the sixth degree
with the complex-valued coefficients:

det[aijkl(anjz + iDej)(anlE + iDel) — 5119] =0. (39)

In equation (39 Qiikl D, n* and e are given Qiikl is real-valued or complex-valued, D
y Wigkly ) ) J ) )
n* and e are real-valued.

Once o is determined, the propagation and attenuation vectors P and A read
P =n*Rec, A =n"Imo+ De. (40)

An important property of this specification is that the propagation vector P is perpendic-
ular to ¥, and the plane ¥ represents a wavefront of the plane wave under consideration.
The real-valued travel time is constant on .
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The expressions for magnitudes of vectors P and A and for the unit vectors n? and

n? follow simply from (16), and (17). For n” we get from (17), n” = epn®, where
ep = Reo/|Reo|. The phase velocity C reads
C =1/|Reo|, (41)

and the attenuation angle v is given by the relation

Imo
[(Imo)2 + D2]1/2

CosSy = €p (42)
Actually, for p* given by (37), the componental specification of the slowness vector rep-
resents the mixed specification of the slowness vector. The mixed specification of the

slowness vector was used intensively in a number of papers by Cerveny and Pgenéik
(2005a,b, 2008, 2011). See also Sections 2 and 3.2.

4.3 Coplanar case: Rep” parallel to Imp~

We again denote by e a real-valued unit vector along ¥ and consider the vector p* in the

following form:
p~ = Ze. (43)

Here Z is an arbitrary complex-valued scalar. Both real and imaginary parts of p~ are
parallel, but they may have opposite orientation. The slowness vector p is given by the
relation, see (13):

p=on®+Ze, with n*.-e=0. (44)

The generally complex-valued quantity o is a root of the algebraic equation of the sixth
degree:
det[aijkl(anf + Zej)(anlz + Zel) — 51}9] =0. (45)

The propagation and attenuation vectors P and A are then given by the relations
P = n*Rec +eReZ, A =n*Imo+elm7 . (46)
The magnitudes of P and A read
IP| = [(Reo)? + (ReZ)?]'?, |A| = [(Imo)? + (ImZ)?]"/% . (47)

It follows immediately from (46) that we deal with the coplanar case. An important
property of the coplanar case is that all quantities are fully confined to the plane specified
by real-valued unit vectors n* and e. The phase velocity C and the attenuation angle
are given by relations

C = 1/[(Reo)? + (ReZ)?]'/? , (48)
cosy = [(Reo)(Imo) + (ReZ)(ImZ)]/|P||A] . (49)

Equations derived in this section for the coplanar case are generalizations of those
derived in Section 4.1 for the real-valued p*, and in Section 4.2 for the imaginary valued
p”. Actually, we can define Z as Z = S +iD.
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4.4 Cartesian components of p”

We introduce two mutually perpendicular real-valued unit vectors e;,es in the plane X
in such a way that the three vectors e, ey, e5 = n* form a right-handed triplet of unit
vectors. Then, we can specify p~ as

p” =ple +pye;, (50)

where p? and p3 are, in general, complex-valued. Consequently, the slowness vector p
can be expressed as follows, see (13),

p = on” 4 pTe; +ple, . (51)
Equation (14) for o then reads
det[ai]‘kl(a’ﬂ? + p?@lj +p§62j)(0'nl2 +p§61l + p§621) — 6zk] =0. (52)

Here n”, e;,e, are known real-valued unit vectors, py and p) are the given complex-
valued components of p*. Quantity o is a generally complex-valued root of the algebraic
equation (52) of the sixth degree with complex-valued coefficients.

Once o is determined, the propagation and attenuation vectors P and A are given by
relations

P = n”Reoc + e Rep’” + eyRep) |

A = n"Imo + e;Imp} + eslmp} . (53)
This yields
IP| = [(Reo)”+ (Repy)” + (Repy)™]'/?
Al = [(Imo)? + (Impy)® + (Tmpy)*]"/* . (54)

The unit vectors n” and n* along P and A are given by relations (17) with p* given by
(50). The relations for the phase velocity C and attenuation angle 7 read

C = 1/[(Reo) + (Rep})? + (Repy)?]'/? (55)
cosy = [(Reo)(Imo) + (Repy)(Impy) + (Repy) (Imp3)]/|P||A] . (56)

It may be useful to choose the direction of the vector e; so that it specifies the ori-
entation of the vector Rep”. This implies Repy = 0. Then the propagation vector P is
confined to the plane (n*, e;), and p* is given by the relation

p” =pre, +ilmpe, . (57)

Here p¥ is a complex-valued scalar, p¥ = S +iD;, and p3 is a purely imaginary scalar,
py = iD,. Here S is the apparent slowness along the vector e;, D; and D, are the
appropriate inhomogeneity parameters along e; and e;. The slowness vector p is then
given by the relation

p =on” +pye; +iDse; . (58)
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The complex-valued quantity o is a root of equation (52), in which we put Repy = 0. All
other relevant equations are given by (53)-(56) with Repy = 0.

We remind the reader that the propagation vector P is confined to the plane (n*,e;),
but the attenuation vector A points generally outside this plane. For this reason, we
speak of the non-coplanar case. The coplanar case occurs when Dy = 0.

5 Special cases of media

As mentioned above, equations of Sections 2, 3 and 4 are valid for any anisotropic or
isotropic, viscoelastic or perfectly elastic media. In general, the determination of the
slowness vector p requires numerical solution of an algebraic equation of the sixth degree
with complex-valued coefficients to determine the generally complex-valued quantity o.

In some special cases, the computations simplify, and the solution of the algebraic
equation of the sixth degree can be found in a simple analytic form. Important examples
are the isotropic viscoelastic media, where all formulae are particularly simple. Analytic
expressions can be also obtained for SH waves propagating in a plane of symmetry of a
monoclinic (orthorhombic, hexagonal) viscoelastic medium. In both cases, we can give
simple analytic expressions for all computed quantities.

5.1 Isotropic viscoelastic media
For isotropic viscoelastic media, a;j;; are given by the well-known relation
A p
Qijll = ;6ij5kl + ;(51'1;5]'1 + 0idjk) - (59)

Here A/p and p/p are density-normalized complex-valued Lamé’s viscoelastic moduli. For
aiji given by (59), equation (6) factorizes:

det[a;mpipi — 6ir) = (&®pipi — 1)(B?prpr — 1)* =0, (60)
where )\ 19
=2 (61)
p p

Here « is the complex-valued velocity of P waves, [ is the complex-valued velocity of S
waves. Consequently, we can write the constraint relation for both P and S waves in the
same form

pipi =1/V?, (62)
where
V2 =o? for P wave ,
VZ=p? for S wave . (63)
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We now consider an arbitrary plane Y, and an arbitrarily chosen complex-valued vector
p”, situated in the plane 3. Inserting the componental specification (13) into (62), we

obtain
o’ +p”-p =1/V>. (64)

This yields a very simple expression for o:

o=+[1/V?—p”.p /7. (65)

It is common to express 1/V? in terms of ReV? and of the quality factor @ given by
the relation
Q™' = —Im(V?)/Re(V?) . (66)

From positive definiteness of the 6 x 6 matrix A® and positive definiteness or zero of the
6 x 6 matrix A’, which form the matrix A® —iA’ of viscoelastic moduli in the Voigt
notation, we have ReV? > 0 and ImV? < 0. Thus the quality factor is a real-valued
positive scalar, which can became infinite if ImV2? = 0. For V = a, we get the quality
factor for P waves, for V = 3 for S waves. Using @, we can express V2 in the following
way:

V2 =Re(V?)(1-1/Q) (67)
which finally yields:

1 1+iQ™!

V2 ReV2(1+Q2)°

(68)

Inserting (65) into (13), we obtain the complete analytical expression for the slowness

vector p:
p=+(1/V? - p”.p”)"/*n” 4+ p” (69)

where 1/V? is given by (68), and p” by various expression given in Section 4.

The derivation of other relevant quantities is easy. For the propagation and attenuation
vectors P and A we get from (15):

P = +Re(1/V?2—p”-p”)/?n” + Rep” ,
A = +Im(1/V? - p”-p”)"/n” + Imp” . (70)
Magnitudes of vectors P and A read:
P| = [Re(1/V?>—p” p”)'*)* + (Rep”)’]'*
Al = [(Im(1/V? = p”-p*)"/?)? + (Tmp™)*]'/* . (71)

The phase velocity C and the attenuation angle cos+y are given by equations (10) and (9),
respectively.

We shall now consider several important examples of the specification of p* for isotrop-
ic viscoelastic media

a) Real-valued p~.
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We consider p* = Se, where S and e have the same meaning as in (31). Then
o=+(1/V? —~ S*)/2 and

p=+(1/V?*—-5%2n" 4 Se . (72)

The determination of other expressions is straightforward. The attenuation vector A =
+Im(1/V?2 — S2)/2n% is always perpendicular to the plane ¥. It may be non-vanishing
even in perfectly elastic isotropic media when 1/V? is real-valued. In this case, we obtain
A = £(5? — 1/V?)/2n% for 1/V? < S? and speak of evanescent waves. For 1/V? > S2,
we obtain A = 0.

b) Imaginary-valued p*

We consider p* = iDe, where D and e have the same meaning as in (37). Then
o = +(1/V? 4 D?)'/? and the slowness vector p is given by the relation

p=+(1/V?4+ D*)Y*n* +iDe. (73)

In this case the plane ¥ again represents the wavefront of the plane wave under consid-
eration. This specification of p* corresponds to the mixed specification of the slowness
vector, which was studied in detail by Cerveny and Psencik (2005a,b).

c) Coplanar case

We use p* = Ze, where Z is an arbitrary complex-valued scalar, see (43). Then
o = +(1/V? — Z?)'/? and the slowness vector p is given by the relation

p=+(1/V?—7%)Yn® 1 Ze . (74)

In this and previous cases, both the propagation and attenuation vectors P and A are
confined to the plane specified by unit vectors n* and e, and thus we deal with the
coplanar case.

d) Homogeneous plane wave

Very interesting results are obtained for p* given by the relation p* = Ze, with
Z=aV~", (75)

where a is a real valued scalar, 0 < a? < 1, and V is the complex-valued velocity given in
(68). The quantity o is then given by the relation

1,1, 1
a:i[ﬁ—aﬁ]/ :ivx/l—aZ. (76)

The slowness vector p = on> + p” can be expressed as follows:

1

with

N7 = 4+V1 — a?n” + ae . (78)
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Here N is a real-valued unit vector, situated in the plane given by n* and e. The
propagation and attenuation vectors P and A read

P =Re(1/V)N” | A =Im(1/V)N" . (79)

Equations (79) show that vectors P and A are parallel. In other words, the plane wave
under consideration is homogeneous.

To conclude: When we take p® = aV ~'e on the plane 3, we obtain a homogeneous
plane wave propagating from . The direction of propagation N of this homogeneous
plane wave is controlled by the real-valued scalar a, see (78). For a = 0, N = £n¥; for
a==+1, N7 = +e.

e) Non-coplanar case

Similarly as in Section 4.4, we can introduce two mutually perpendicular real-valued
unit vectors e;, e, in the plane ¥ in such a way that the three vectors e, e;, e;3 = n”
form a right-handed triplet of unit vectors. We can introduce p* in the form of (50). All
equations then remain the same as in Section 4.4, only the expression for ¢ can be now

written explicitly:
1

V2
Both p7’ and p} may be chosen arbitrarily and may be complex-, real-, imaginary-valued
or zero. For example, for py = 0, we obtain the coplanar case in the plane (n”, e;).

o=[= —pr-pPr—py pyl"%. (80)

It may be useful to generalize slightly the coplanar case, considering general complex-
valued py, but purely imaginary p3,

p%] = iD2e2 . (81)
This yields the formula (57) for p*. For o we have in this case:
0 =[1/V?—p7-pi + Dj]' (82)

Eael):

and p is given by (58). The propagation vector P is fully confined to the plane (n
P = Reon”™ + Se, , (83)
but the attenuation vector A may point outside this plane:

A = Imo 1’1E + D1e1 + Dgeg . (84)

We speak of the non-coplanar case.
5.2 SH waves in a plane of symmetry
of monoclinic viscoelastic media

The simplest case of anisotropic media, which can be solved analytically, is the case of
SH waves propagating in a plane of symmetry of a monoclinic (orthorhombic, hexagonal)
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viscoelastic medium. This case is very useful for simple illustration of differences between
anisotropic and isotropic viscoelastic media.

We choose the Cartesian coordinate system x1, x5, x3 in such a way that the plane of
symmetry ¥° corresponds to the coordinate plane z;, z3. Both real-valued and imaginary-
valued parts of the polarization vector U of the SH plane wave are perpendicular to the
plane %, In the plane of symmetry, the constraint relation reads (Cerveny and Psencik,
2005a; Carcione, 2007):

Agep? + Aup; + 2Asp1p3 =1 . (85)

Here Agg, A4y and Ay are the complex-valued density-normalized viscoelastic moduli,
in the Voigt notation. For As;s = 0, the monoclinic viscoelastic medium reduces to the
orthorhombic or hexagonal medium.

We now introduce an arbitrary straight-line [ in the plane ¥°, and the projection of
the slowness vector p* along [. We assume that p* is known; it may be complex-valued,
real-valued or imaginary valued.

The componental specification (13) of the slowness vector in the plane (z1, x3) yields:
pr=ony +py, p3=ony +py . (86)

Inserting (86) into (85) yields a quadratic equation for o. Its solution yields two roots
0192

)

012 = —Fp/Tas + [1/Tas — (pTny — nipy)*A /T3], (87)
where
FQQ = A66 (n?)Q + A44(TL§)2 + 2144671?%? y
By = Aenipl + Aunzpy + A(nipy +nipt) , (88)
Foy = Ags(p?)? + Au(py)? + 244607 p5
and

A - A44A66 - A4216 . (89)

Both propagation vector P and attenuation vector A are situated in the plane of symmetry
s,

P, =Reon? +Rep’, P3;=Reony + Repy ,
Ay =TImony +Impy , Az = Imonj + Imp . (90)

The phase velocity C of the plane wave under consideration reads
C =1/[(Reo)* + (Repy)® + (Rep3)?]'/? (91)
and the attenuation angle v can be calculated using the relation

cosy = [RecImo 4 RepFImpT + RepsImp3]/|P||A] . (92)
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6 Application of mixed and componental
specifications of the slowness vector
in the reflection/transmission process

In this section, we discuss the application of both mixed and componental specifications
of the slowness vector in the process of reflection and transmission of plane waves at a
planar interface ¥ separating two homogeneous viscoelastic media.

It is useful to specify the slowness vector p™® of the incident wave by the mixed
specification. In the mixed specification, the slowness vector p™* is specified with respect
to a plane wavefront " of the incident wave. We denote by n" the unit normal to the
plane ¥ and by p" the projection of the slowness vector p*¢ to ". The vector p" is
imaginary valued, because the travel time along £V is constant and thus the real part of

p" is zero.

Consider now a plane wave with the slowness vector p**¢, incident at a planar interface
Y. The vector p*tangent to ¥ can be then computed by projecting p¢ into the plane X.
The slowness vector p™ of a generated (reflected, transmitted) wave is then determined

from p” using the componental specification.

In the following, we work with quantities 0™ and ™. The former is always related to

the mixed specification, the latter to the componental specification of the slowness vector.

6.1 Anisotropic viscoelastic media

We denote by aﬁ?}él the complex-valued density-normalized viscoelastic moduli in the half-
space in which the incident wave propagates, and by a;";kl the viscoelastic moduli in the
halfspace in which the selected R/T wave propagates. For reflected waves, the moduli
ajly are identical with a7, As mentioned above, the vector p" is purely imaginary. In
the mixed specification, used for the incident wave, it is given by a simple relation

p" =iDm . (93)

The real-valued unit vector m is perpendicular to n", but otherwise it can be arbitrarily
oriented in the plane . The real-valued scalar D, called the inhomogeneity parameter,
is a projection of the attenuation vector A = Imp™® to the plane ¥". Then the mixed
specification of the slowness vector p‘™° is given by the relation, see (11),

p" = o™n" +iDm . (94)

Here 0™ is a root of an algebraic equation of the sixth degree with complex-valued
coefficients, see (12):

det[al, (™ n} +iDm;)(0™n” +1Dmy) — 6] =0 . (95)

Note that the parameters of incident plane waves, which should be given, are the real-
valued unit vectors n"' and m, and the real-valued inhomogeneity parameter D: —oo <
D < oo.
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Consider now a planar interface ¥, defined by its normal n*. We introduce two real-
valued vectors N* and M™, given by the relations

N* = n” x (0" xn¥) =n" —n*@" -n%),

M* = n” x (mxn”)=m—n”(m-n”). (96)

These vectors represent projections of vectors n"” and m into the plane 3. Note that the
vectors N* and M* are generally neither unit nor mutually perpendicular.

The projection of the complex-valued slowness vector p™¢ of the incident wave into

the planar interface X is given by the relation
p” = 0"*N” +iDM” . (97)

The slowness vector p’* of the reflected/transmitted generated at the planar interface ¥
is then given by the relation
prt — O_rtnE + pE , (98)

where p” is given by (97) and ¢! is a root of an algebraic equation of the sixth degree:

det[afjkl(a”nf + p];)(a”nlE +p7) — 6] = 0. (99)

The above equations can be expressed in many alternative forms. They are valid
for arbitrary density-normalized viscoelastic parameters a;’; and ajf,;, both complex-
valued and/or real-valued), for coplanar and non-coplanar cases, for homogeneous and
inhomogeneous plane waves, for arbitrarily chosen incident plane wave and for arbitrarily

oriented planar interface X.

Once the slowness vector of the generated wave is determined, we can simply calculate
the propagation and attenuation vectors, and the phase velocity C and the attenuation
angle v of this wave.

The advantage of the described approach is that it does not use the attenuation angle
~ for the specification of the slowness vector of the incident wave. The plane waves
corresponding to a particular attenuation angle v may not exist (Cerveny and Psencik,
2011). The approach based on the inhomogeneity parameter D of the incident wave fully
avoids this problem.

6.2 Isotropic viscoelastic media

In viscoelastic isotropic media, the procedure remains the same as in viscoelastic anisotrop-
ic media, but solutions of algebraic equations of sixth degree can be given in an analytic
form. The complex-valued velocities of plane waves are denoted by V', as indicated in (63)
with (61). We use again the superscripts “inc” and “rt” to denote quantities related to
incident and R/T waves.. Thus, V¢ is the complex-valued velocity of the incident wave,
and V"™ the complex-valued velocity of selected R/T wave. The velocities V"¢ and V"t
may, of course, correspond to P or S waves, according to the problem under consideration.
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All equations of Section 6.1 remain exactly the same even for isotropic media, only the
algebraic equations of the sixth degree (95) for incident wave and (99) for R/T wave are
replaced by their analytical solutions. For a selected incident wave (P or S), the solution
of (95) is (Cerveny and Psencik, 2011; Eq.23):

o™ = £[(1/V™)? + D*)'/? | (100)

This expression is indeed very simple. For a selected reflected/transmitted wave, the
solution of (99) following from (65) and (97) reads:

o't = +[(1/V™)? — (6™ N” +iDM”)’]'/ . (101)

In our problem, only one of the signs used in front of the complex-valued square roots in
(100) and (101) has a physical meaning. The determination of the proper sign is a very
complicated problem in the study of reflection/transmission coefficients of plane waves at
a planar interface separating two isotropic viscoelastic media. There is a broad literature
devoted to it, see, e.g., Krebes (1983), Ruud (2006), Krebes and Daley (2007), Cerveny
(2007), Sidler, Carcione and Holliger (2008), etc. This problem, however, is not a subject
of this article.

The expressions for o and p" may be given in many alternative forms. For example,
we can express the vectors N* and M in terms of simpler vectors n*, n"' and m. From
(96) we get:

NENE — 1—(HE'HW 2 ,
M*M* = 1— (n”-m)?,
N*M* = —(n” - n")(n” -m). (102)
This yields:
(6"*N* +iDM>)? = (1/V™)? — [¢"*(n* - n") +1D(n” - m)]? . (103)
Inserting (103) into (101), we obtain
Urt — j:{(l/vrt)2 _ (1/Vinc)2 + [Uinc(nE . l’lW) 4 iD(nE . m)]2}1/2 ] (104)

The slowness vector p™ of the reflected /transmitted wave is given by the relation, see eq.
(98): .
p"' = o"'n¥ 4+ ¢"*N*” 4 iDM* . (105)

Here o™ is given by (104), o' by (100), N* and M?* by (96).

The expression (104) simplifies considerably for monotypic reflected waves, as V" =
Vine in this case, and (104) yields:

o™ = +{[o™(n” - n") +iD(n® - m)?}/? . (106)

Another useful form of expressions for o™ and p™ is based on a slightly modified
specification of the vector p". Instead of (100), we use

p" =iDm =iDym; +iD>m, , (107)
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where

m; = (n” xn")/|n” x n"|

m, = n" xm,. (108)

The mutually perpendicular unit vectors m; and ms, are situated in the plane ¥"'. The
vector my is parallel to the intersection of the planes X" and 3, i.e., it is situated in both
planes ©% and . The vectors m;, my and n" form a triplet of mutually perpendicular
unit vectors. The quantity o™¢ is then given by the relation

o™ = +[(1/V")? + D? 4 D2)'/? | (109)
and the expression for the slowness vector p™¢ of the incident wave reads:

p™¢ = o™n" +iDym; +iD>m, . (110)
Projecting n'', m; and my on the plane 3, we get

p” = 0" N” +iD,M? +iD,MJ | (111)
where N* is given by (96), and M¥, M3 by analogous relations

M? = n” x (m; x n¥) = m; — n*(m, -n*) ,

I\l

My = n” x (my x n*) = my —n*(my-n*) =mj, . (112)
The second relation M3 = my in (112) is important. It is a consequence of the fact that

m, is introduced as vector perpendicular to vectors n" and n*.

Now we rewrite 0" given by (104), using the new specification of iDm, see (107). For
iD(n*m) we obtain

iD(n* - m) =iD;(n* - m;) 4+ iDy(n” - my) = iD;(n* - m;) . (113)
Inserting (113) into (104) yields the final expression for o"*:
o't = £{(1/V"™)? — (1/V")? 4 [0™¢(n” - n") +iD;(n” - my)]?}1/2 . (114)
The corresponding slowness vector of the R/T wave is given by the relation, see (105):
p"' = o"'n¥ 4+ ¢"N” +iD,M? +iD,MJ . (115)

Here N* MY and MY can be expressed in terms of n*, n" m; and m, using (96) and
(112). Tt is interesting to note that the expression (114) for o™ does not explicitly depend

on Dy. The quantity D, is included only in expression for o/, given by (109).

Let us summarize the final results for the non-coplanar case. Consider the slowness
vector p™¢ of the incident wave, specified by relation (110), with o**¢ given by (109). The
quantities D; and D, are the inhomogeneity parameters in the plane specified by vectors
n”, n" and in the direction perpendicular to this plane, respectively. The inhomogeneity

parameter Dy controls the degree of non-complanarity of the incident wave. The R/T
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plane wave is also non-complanar in this case. The slowness vector p™ of the R/T wave
is given by the relation (115) with o™ given by (114) and o™ by (109).

All the above equations simplify considerably for the coplanar case, which we obtain
by specifying D, = 0 in the equations for the non-coplanar case. For the slowness vector
of the incident wave we get from (110):

in

p™ = o"™n" +iDim, , (116)
where
g = 4[(1/V)? 4 D22 (117)
see (109). For the slowness vector of the R/T wave we get from (115):
p" =0"n" + 0"N” +iD;My (118)

where ¢! is given by (114). Note that the slowness vector of the R/T wave is coplanar if
the slowness vector of the incident wave is coplanar.

Finally, we consider a homogeneous incident wave. In this case D; = Dy = 0. For
the slowness vector p™¢ of the incident plane wave we get from (110) and (109):

pinc — o.inan — :I:IIW/Vmc ] (119)
For the slowness vector of the R/T wave we get from (115) and (109):
prt — O_rtnE + NE/vinc , (120)
where .
o = {1V — (VP (07 ) (121)
Note that n* - n"' corresponds to cos i, where i is the angle of incidence. Consequently,
1 — (n®-n")? =sin? 4.

It should be emphasized that an incident homogeneous plane wave does not necessarily
generate a homogeneous R/T plane wave.

7 Concluding remarks

The derived equations for the component o of the slowness vector p into the normal
n” to a plane ¥ can be used for homogeneous and inhomogeneous time-harmonic plane
waves, propagating in anisotropic or isotropic, viscoelastic or perfectly elastic media. The
position of the plane ¥ may be arbitrary and the known vector p* situated in the plane
Y may be also arbitrarily oriented in the plane > and may be complex-valued, real-valued
or imaginary-valued.

The described formalism, based on the componental specification of the slowness vec-
tor, can be suitably used to determine the reflection/transmission coefficients of plane
waves at a plane interface ¥ between two viscoelastic anisotropic halfspaces. For the in-
cident wave, the general mixed specification (11) of the slowness vector p™*® may be used.
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The vector p* is then determined by projecting p™* into the plane ¥. The slowness vec-
tors of generated waves are then calculated from p* using the componental specification.
From appropriate interface conditions, we then determine reflection/transmission coeffi-
cients. The detailed algorithms with relevant computations would increase the length of
this paper inadmissibly, and will be discussed elsewhere.

The computation of reflection/transmission coefficients of plane waves at a plane in-
terface between two viscoelastic halfspaces in the frequency domain, however, relies on the
validity of the correspondence principle. In the correspondence principle, the complex-
valued viscoelastic moduli are used in the frequency domain. For a more detailed dis-
cussion of the correspondence principle, see Bland (1960), Carcione (2007), Borcherde
(2009), and Morozov (2011). Morozov (2011) claims that the correspondence principle is
rigorously applicable only to boundless uniform media and that it should be used with
caution when applied to heterogeneous cases. We believe that the application of compo-
nental specification of the slowness vector would be useful in further illumination of the
problem.
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