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zSummaryTime-harmoni
, homogeneous and inhomogeneous plane waves propagating in isotropi
and anisotropi
 vis
oelasti
 media are investigated. The 
omponental spe
i�
ation of theslowness ve
tor p is used, in whi
h the slowness ve
tor p is 
omputed from its knownproje
tion p� to an arbitrarily 
hosen plane �. The ve
tors p and p� are, in general,
omplex-valued. The most important step in the pro
edure 
onsists in the determina-tion of the 
omponent � of the slowness ve
tor p to the normal n� to �. For generalanisotropi
 vis
oelasti
 media, the 
omponent � is a root of an algebrai
 equation of thesixth degree, with 
omplex-valued 
oeÆ
ients. For isotropi
 vis
oelasti
 media, the alge-brai
 equation of the sixth degree fa
torizes to simple quadrati
 equations. For SH planewaves propagating in the plane of symmetry of a mono
lini
 (orthorhombi
, hexagonal)vis
oelasti
 medium it also fa
torizes providing a quadrati
 equation for SH waves. The
omponental spe
i�
ation of the slowness ve
tor plays an important role in the solutionof the problem of the re
e
tion/transmission of plane waves at a plane interfa
e betweentwo vis
oelasti
 anisotropi
 media.Key words: attenuation, seismi
 anisotropy, theoreti
al seismology, vis
oelasti
ity.1 Introdu
tionIn this paper, we study homogeneous and inhomogeneous time-harmoni
 plane waves,propagating in isotropi
 or anisotropi
, vis
oelasti
 or elasti
 media. We 
onsider a ho-mogeneous or inhomogeneous plane wave with the 
omplex-valued slowness ve
tor p,spe
i�ed by the so-
alled 
omponental spe
i�
ation with respe
t to some arbitrarily 
ho-sen plane �. The 
omplete slowness ve
tor p, however, is not known, only its 
omplex-valued proje
tion p� to the plane � is given. The goal is to determine the 
omplete
omplex-valued slowness ve
tor p of the plane wave under 
onsideration from the ve
torSeismi
 Waves in Complex 3-D Stru
tures, Report 21, Charles University, Fa
ulty of Mathemati
s andPhysi
s, Department of Geophysi
s, Praha 2011, pp. 185{207185



p� situated in the plane �. The most important step in the pro
edure is the determinationof the unknown 
omponent � of the slowness ve
tor to the normal n� to the plane �.This problem plays an important role in various seismologi
al appli
ations, parti
ularlyin the problem of re
e
tion and transmission of plane waves at a planar interfa
e and inthe problem of displa
ement-stress propagator matri
es.The 
omponental spe
i�
ation of the slowness ve
tor was brie
y explained by �Cerven�yand P�sen�
��k (2005a,b). In the 
omponental spe
i�
ation, the 
omplex-valued slownessve
tor p is given by the relation p = �n� + p�, where n� is a real-valued unit normal tothe plane �, and p� is the proje
tion of the slowness ve
tor p to the plane �. The quantity�, representing the 
omponent of the slowness ve
tor to n�, is sought as a fun
tion of theknown p�. Both � and p� may be, in general, 
omplex-valued.The 
omponental spe
i�
ation of the slowness ve
tor has been broadly used in thesolution of re
e
tion-transmission problem of plane waves at a plane interfa
e betweentwo homogeneous perfe
tly elasti
 isotropi
 or anisotropi
 media. For anisotrop-i
 media see, e.g., Fedorov (1968), Musgrave (1970), Gajewski and P�sen�
��k (1987), Helbig(1994). For a review, see �Cerven�y (2001, Se
tion 5.4.7). It has also been used in the 
om-putation and appli
ation of displa
ement-stress propagator matri
es in perfe
tly elasti
isotropi
 or anisotropi
 1-D media, see, e.g., Kennett (1983, 2001), Chapman (1994,2004), Thomson (1996a,b). A very similar approa
h, 
alled usually the Stroh formalism(Stroh, 1962), has been used in applied mathemati
s and me
hani
s (Shuvalov, 2001).For isotropi
 and anisotropi
 vis
oelasti
 media, the mixed spe
i�
ation of the slow-ness ve
tor has been also used (�Cerven�y and P�sen�
��k, 2005a,b). The mixed spe
i�
ation
orresponds to the 
omponental spe
i�
ation, for whi
h the known ve
tor p� is purelyimaginary. The 
hoi
e of purely imaginary p� implies that the plane � represents thewavefront of the plane wave under 
onsideration. It was proved that the slowness ve
-tor p of any inhomogeneous or homogeneous plane wave propagating in an isotropi
 oranisotropi
, vis
oelasti
 or perfe
tly elasti
 medium without interfa
es (from now on, werefer to su
h media as homogeneous) may be des
ribed by this spe
i�
ation. Analogously,any purely imaginary ve
tor p� yields an inhomogeneous or homogeneous (if p� = 0)plane wave propagating in a medium under 
onsideration.It is possible to show that any plane wave, either inhomogeneous or homogeneous,
an be alternatively des
ribed by the 
omponental or mixed spe
i�
ation of the slownessve
tor. The mixed spe
i�
ation, in whi
h the plane � represents the wavefront of theplane wave under 
onsideration, is more suitable for the investigation of basi
 propertiesof homogeneous and inhomogeneous plane waves in unbounded media. From the 
ompu-tational point of view, it is simpler and more straightforward, as it is not 
onne
ted withproblems of the spe
i�
ation of 
orre
t signs of square roots in the 
omplex plane. Theimportant physi
al quantities of the plane wave, like phase velo
ity, attenuation angle,et
., are obtained easily. The advantage of 
omponental spe
i�
ation is that it gives di-re
tly the 
omponent � of the slowness ve
tor p to the normal of an arbitrarily 
hosenplane �, not ne
essarily 
oin
iding with the wavefront. This is the main reason whythe 
omponental spe
i�
ation is more useful in the solution of the re
e
tion/transmissionproblem at an arbitrarily situated and oriented planar interfa
e �.186



In this paper, we dis
uss the determination of the 
omponent � of the 
omplex-valuedslowness ve
tor p to the normal of an arbitrarily 
hosen plane � in an anisotropi
 orisotropi
, vis
oelasti
 or perfe
tly elasti
 medium, assuming the ve
tor p� situated in theplane � being known. In Se
tion 2, we des
ribe brie
y the properties of homogeneousand inhomogeneous plane waves, propagating in anisotropi
 vis
oelasti
 media, and giveexpressions for their phase velo
ity C and the attenuation angle 
 (also 
alled the inho-mogeneity angle). We des
ribe brie
y the mixed spe
i�
ation of the slowness ve
tor. InSe
tion 3, we use the 
omponental spe
i�
ation of the slowness ve
tor, and derive ex-pressions for the 
omponent � of the slowness ve
tor p to the normal of the plane �.We also present expressions for the unit ve
tors nP and nA, spe
ifying dire
tions of thepropagation and attenuation ve
tors. Further, we present expressions for the phase velo
-ity C and the attenuation angle 
 of the relevant homogeneous or inhomogeneous planewave spe
i�ed on the plane �. We also present relations between 
omponental and mixedspe
i�
ations in a homogeneous medium. In Se
tion 4, we dis
uss 
ertain spe
ial 
hoi
esof the 
omplex-valued ve
tor p� in the 
omponental spe
i�
ation, su
h as the real-valuedp�, the imaginary-valued p�, and the so-
alled 
oplanar 
ase. By the \
oplanar 
ase", weunderstand here the 
ase, in whi
h the unit normal n� to the plane � and the ve
tors Repand Imp are all situated in one plane. If this is not the 
ase, we speak of non-
oplanar
ase. In Se
tion 5, we pay attention to isotropi
 vis
oelasti
 media and to the 
ase of SHplane waves propagating in a plane of symmetry of a mono
lini
 (in
luding orthorhombi
and hexagonal) medium, for whi
h all expressions 
an be written in a simple analyti
alform. In Se
tion 6, we dis
uss appli
ations of the 
omponental and mixed spe
i�
ationof the slowness ve
tor in the problem of re
e
tion/transmission of waves at a plane in-terfa
e separating anisotropi
 or isotropi
 vis
oelasti
 media. In Se
tion 7, we o�er some
on
luding remarks.2 Inhomogeneous plane wavesin anisotropi
 vis
oelasti
 mediaWe dis
uss time-harmoni
 plane waves propagating in homogeneous anisotropi
 vis
oelas-ti
 media, and des
ribe them in the following way:ui(xj; t) = aUj exp[�i!(t� pnxn)℄ : (1)Here ui; Ui, and pi are Cartesian 
omponents of the 
omplex-valued displa
ement ve
tor u,the polarization ve
tor U and the slowness ve
tor p. The symbol a denotes the 
omplex-valued s
alar amplitude. The anisotropi
 vis
oelasti
 medium under 
onsideration isspe
i�ed by 
omplex-valued density-normalized vis
oelasti
 moduli aijkl, satisfying thesymmetry relations aijkl = ajikl = aijlk = aklij : (2)We use the notation aijkl = aRijkl � iaIijkl ; (3)with the sign \�" of the imaginary part. This sign is related to the minus sign in theexponential fa
tor of (1). In the Voigt notation, the moduli aRijkl � iaIijkl are repla
ed by187



the elements AR�� � iAI�� of the 6 � 6 
omplex-valued symmetri
 matrix AR � iAI. Weassume that the real-valued matrix AR is positive de�nite and AI is positive de�nite orzero. The density-normalized vis
oelasti
 moduli aijkl and the elements A�� are frequen
ydependent. We, however, do not write aijkl(!) or A��(!) with the argument !, be
ausewe 
onsider arbitrary, but �xed frequen
y ! > 0.Assuming the validity of the 
orresponden
e prin
iple (Car
ione, 2007), the plane wave(1) must satisfy the time-harmoni
 equation of motion. This allows us to determine Ujand pj. The equation of motion yields three linear algebrai
 equations for Ui,�ikUk = Ui ; i = 1; 2; 3 ; (4)where � is the 3� 3 generalized Christo�el matrix, with elements�ik = aijklpjpl : (5)The 
ondition of solvability of the system of equations (4) for U1; U2; U3 is as follows:det[aijklpjpl � Æik℄ = 0 : (6)The slowness ve
tor p satisfying the 
onstraint relation (6) 
an be used to solve thesystem of linear equations (4) and determine the 
orresponding polarization ve
tor U.The 
omplex-valued s
alar amplitude a may be 
hosen freely.Instead of the slowness ve
tor p, the wave ve
tor k = !p has been often used inseismologi
al literature. As we 
onsider only time-harmoni
 waves with the 
onstant
ir
ular frequen
y !, the di�eren
e between p and k is only formal, and we use only p inthe following.The 
omplex-valued slowness ve
tor p 
an be expressed in the following form:p = P+ iA ; (7)where the ve
tors P = Rep and A = Imp are real-valued; P is 
alled the propagationve
tor and A the attenuation ve
tor. We introdu
e real-valued unit ve
tors nP and nAalong P and A as nP = P=jPj ; nA = A=jAj : (8)The plane wave is 
alled homogeneous if nP = nA, and inhomogeneous if nP 6= nA.We de�ne the attenuation angle 
 (also often 
alled the inhomogeneity angle) as a non-oriented, non-negative angle made by real-valued unit ve
tors nP and nA:
os 
 = nP � nA = P �A=jPjjAj : (9)Consequently, the plane wave is homogeneous for 
 = 0, and inhomogeneous for 
 > 0. Forinhomogeneous plane waves, the plane spe
i�ed by nP and nA is 
alled the propagation-attenuation plane. The phase velo
ity C of a homogeneous or inhomogeneous plane waveis de�ned as C = 1=jPj ; (10)see �Cerven�y and P�sen�
��k (2005a). 188



Any plane wave, homogeneous or inhomogeneous, propagating in a homogeneousanisotropi
 vis
oelasti
 medium is fully determined if its 
omplex-valued slowness ve
-tor p, 
omplex-valued polarization ve
tor U and the 
omplex-valued s
alar amplitude aare known. As the s
alar amplitude a may be 
hosen arbitrarily and the polarizationve
tor U 
an be simply 
al
ulated from (4) on
e p is known, the de
isive role in the
omputation of plane waves is played by the slowness ve
tor p satisfying the 
onstraintrelation (6). Several methods 
an be used for this purpose. One of them is the mixedspe
i�
ation of the slowness ve
tor (�Cerven�y and P�sen�
��k, 2005a,b).The mixed spe
i�
ation of the slowness ve
tor has the formp = �Wn+ iDm with n �m = 0 : (11)Here n and m are two mutually perpendi
ular unit ve
tors, and D is a real-valued s
alar,D 2 (�1;1), 
alled the inhomogeneity parameter. For n, m and D given, the 
omplex-valued s
alar �W 
an be determined from equationdet[aijkl(�Wnj + iDmj)(�Wnl + iDml)� Æik℄ = 0 : (12)Eq.(12) follows from (6), into whi
h we inserted (11). The physi
al meaning of parametersn,m and D is as follows: The unit ve
tor n is perpendi
ular to the wavefront, i.e., parallelto the propagation ve
tor and identi
al with nP . The unit ve
tor m, perpendi
ular ton, de�nes (together with n) the propagation-attenuation plane, in whi
h ve
tors nP andnA are situated. It is, however, di�erent from nA, as it is perpendi
ular to n. Theinhomogeneity parameter D is a measure of inhomogeneity of the plane wave in thepropagation-attenuation plane. For D = 0, the plane wave is homogeneous, and forD 6= 0 inhomogeneous. The 
omplex-valued s
alar �W represents the 
omponent of theslowness ve
tor p to the ve
tor n.The slowness ve
tor p of any inhomogeneous plane wave 
an be uniquely spe
i�ed byunit ve
tors n and m and by the inhomogeneity parameter D 6= 0. Other way round, anyparameters n, m and D 6= 0 spe
ify uniquely one slowness ve
tor of an inhomogeneousplane wave.The mixed spe
i�
ation of the slowness ve
tor 
an be used for the investigation of ho-mogeneous and inhomogeneous plane waves propagating in unbounded vis
oelasti
 mediawithout interfa
es. For plane waves spe
i�ed at an arbitrary plane � by the ve
tor p�, itis more suitable to use the 
omponental spe
i�
ation of the slowness ve
tor.3 Componental spe
i�
ation of the slowness ve
tor3.1 De�nition and properties of the 
omponental spe
i�
ationThe 
omponental spe
i�
ation of the slowness ve
tor is parti
ularly useful in the solutionof re
e
tion/transmission problems. Let us emphasize that any slowness ve
tor expressedin terms of the 
omponental spe
i�
ation at an arbitrary plane � 
an be also expressedin terms of the mixed spe
i�
ation and vi
e versa.189



In the 
omponental spe
i�
ation of the 
omplex-valued slowness ve
tor p at an arbi-trarily 
hosen plane �, we pro
eed as follows. We denote the real-valued unit normal to� by n�, and spe
ify p in the following way:p = �n� + p� ; with p� � n� = 0 : (13)Here p� is a 
omplex-valued ve
tor, situated in the plane �. The unit ve
tor n� and theve
tor p� are assumed to be known, but the 
omplex-valued s
alar quantity � is to bedetermined from the 
onstraint relation (6). Inserting (13) into (6) yields a polynomialequation of the sixth degree for � with 
omplex-valued 
oeÆ
ients, whi
h reads:det[aijkl(�n�j + p�j )(�n�l + p�l )� Æik℄ = 0 : (14)This is a basi
 equation of this paper. It has always six generally 
omplex-valued roots�. These roots 
orrespond to P, S1 and S2 waves, propagating in opposite dire
tions.In some spe
ial 
ases, the equation may fa
torize into two equations, one of the se
onddegree and one of the fourth degree or to three equations of the se
ond degree.On
e the roots � of equation (14) are found, we 
an determine the propagation ve
torP and the attenuation ve
tor A from:P = n�Re� +Rep� ; A = n�Im� + Imp� : (15)The magnitudes of these ve
tors are:jPj = [(Re�)2 + (Rep�)(Rep�)℄1=2 ;jAj = [(Im�)2 + (Imp�)(Imp�)℄1=2 : (16)The dire
tions of ve
tors P and A are given by real-valued unit ve
tors nP and nA, see(8), nP = (n�Re� +Rep�)=[(Re�)2 + (Rep�)(Rep�)℄1=2 ;nA = (n�Im� + Imp�)=[(Im�)2 + (Imp�)(Imp�)℄1=2 : (17)The phase velo
ity C of the plane wave under 
onsideration is given by the relationC = 1=jPj, see (10): C = 1=[(Re�)2 + (Rep�)(Rep�)℄1=2 : (18)The attenuation angle 
 is given by the relation 
os 
 = nP � nA, so that
os 
 = (Re�)(Im�) + (Rep�)(Imp�)[(Re�)2 + (Rep�)(Rep�)℄1=2[(Im�)2 + (Imp�)(Imp�)℄1=2 : (19)3.2 Relations between 
omponental and mixed spe
i�
ations ofthe slowness ve
torIn a homogeneous medium, the 
omponental and mixed spe
i�
ations of the slownessve
tor p 
an be used alternatively; one of them 
an be expressed in terms of the other.190



The plane � used in the 
omponental spe
i�
ation 
an be sele
ted arbitrarily. The relevanttransformation does not require any solution of the algebrai
 equation of the sixth degree.We use the slowness ve
tor p spe
i�ed by the 
omponental spe
i�
ation in the form(13) with � being a solution of the algebrai
 equation (14), and by the mixed spe
i�
ationin the form (11) with �W being a solution of the algebrai
 equation (12). We thus requirethat the expressions for the slowness ve
tor p in both spe
i�
ations are equal:�Wn+ iDm = �n� + p� : (20)In the following, we shall use this equation to �nd transformations from mixed to 
om-ponental spe
i�
ation and ba
k.a) Transformation from 
omponental to mixed spe
i�
ationIn this 
ase, the 
omplex-valued s
alar quantity �, real-valued unit ve
tor n� and
omplex-valued ve
tor p� are assumed to be known. Complex-valued s
alar quantity �W ,mutually perpendi
ular, real-valued unit ve
tors n and m, and the real-valued s
alar Dare to be determined.The unit ve
tor n spe
i�es the orientation of the propagation ve
tor and it thus readsn = nP ; (21)where nP is given in (17). Multiplying (20) by nP , we obtain �W ,�W = (�n� + p�) � nP : (22)Equation (20) then yields Dm = Im(�n� � �WnP + p�) : (23)From (23), we 
an determine both m and D separately:m = Im(�n� � �WnP + p�)=jIm(�n� � �WnP + p�)j ; (24)D = jIm(�n� � �WnP + p�)j : (25)Equations (21){(25) allow to express the slowness ve
tor (13) in mixed spe
i�
ation. In(24){(25), we 
an 
hange signs of both m and D, without a�e
ting the slowness ve
tor.As we 
an see in (22), we do not need to solve the algebrai
 equation of the sixth degreefor �W if we wish to transform the 
omponental spe
i�
ation to the mixed spe
i�
ationof the slowness ve
tor, for whi
h � is known. Moreover, we do not need to seek the unitve
tor n perpendi
ular to the wavefront; we obtain it using (21).b) Transformation from mixed to 
omponental spe
i�
ationIn this 
ase, the 
omplex-valued s
alar quantity �W , mutually perpendi
ular, real-valued unit ve
tors n and m, and real-valued s
alar D are assumed to be known. Inaddition, we must know the real-valued unit ve
tor n�, whi
h spe
i�es the plane �, towhi
h n� is perpendi
ular. The 
omplex-valued s
alar quantity � and the 
omplex-valuedve
tor p� are to be 
omputed. 191



The transformation is now simpler than in the previous 
ases. Multiplying (20) byknown n�, we obtain � = (�Wn+ iDm) � n� : (26)From (20), we further obtain p� = �Wn� �n� + iDm : (27)Equations (26) and (27) allow to express the slowness ve
tor (11) in the 
omponentalform. Equations for the 
omponental spe
i�
ation of the slowness ve
tor strongly dependon the position of the plane �, spe
i�ed by the unit ve
tor n� perpendi
ular to �.
) Transformation from one 
omponental to another 
omponental spe
i�
ationWe 
onsider two planes �1 and �2, with unit normals n1 and n2, and a slownessve
tor in the 
omponental spe
i�
ations related to these planes. We wish to transformthe 
omponental spe
i�
ations from the plane �1 to the plane �2 for the given �xedslowness ve
tor. Then �1n1 + p�1 = �2n2 + p�2 : (28)Here �1;n1 and p�1 
orresponds to the plane �1, �2;n2 and p�2 to the plane �2.Assume that the quantities �1, n1 and p�1 are known. To determine the relevantquantities for �2, we must also give n2. From (28), we obtain�2 = (�1n1 + p�1) � n2 : (29)Eq. (28) also yields p�2 = �1n1 � �2n2 + p�1 : (30)4 Spe
ial 
hoi
es of the ve
tor p�Equations (4), (6), (13)-(19) are general and valid for any anisotropi
 or isotropi
, vis-
oelasti
 or perfe
tly elasti
 medium. They are also valid for arbitrarily 
hosen plane �,and for arbitrary 
omplex-, real- or imaginary-valued ve
tor p�, spe
i�ed at �. In thisse
tion, we 
onsider an arbitrary medium, but spe
ial 
hoi
es of the ve
tor p�.4.1 Real-valued p�We denote by e a real-valued unit ve
tor arbitrarily situated in the plane �, and by S areal-valued apparent slowness along e. We de�ne the ve
tor p� by the relation:p� = Se : (31)Using (13), the slowness ve
tor p readsp = �n� + Se ; with n� � e = 0 : (32)192



Here � is a generally 
omplex-valued root of the algebrai
 equation of the sixth degreewith 
omplex-valued 
oeÆ
ientsdet[aijkl(�n�j + Sej)(�n�l + Sel)� Æik℄ = 0 : (33)The propagation and attenuation ve
tors P and A readP = n�Re� + Se ; A = n�Im� : (34)An important property of the 
hoi
e of the real-valued p� is that the attenuation ve
torA is always perpendi
ular to the plane � (parallel to n�). The attenuation ve
tor Ais perpendi
ular to � always when Imp� = 0. In all other 
ases, the attenuation ve
torA deviates from n�. This holds for arbitrary medium, vis
oelasti
 or perfe
tly elasti
,anisotropi
 or isotropi
, and for e arbitrarily situated in �. Note that Im� may be di�erentfrom zero even in perfe
tly elasti
 media (evanes
ent waves).The magnitudes of ve
tors P and A and the expressions for nP and nA follow dire
tlyfrom inserting Imp� = 0 and Rep� = Se to (16) and (17). For nA we get from (17),nA = �An�, where �A = Im�=jIm�j. The phase velo
ity C and the attenuation angle 
read C = 1=[(Re�)2 + S2℄1=2 ; (35)
os 
 = �A Re�[(Re�)2 + S2℄1=2 : (36)4.2 Imaginary-valued p�We again denote by e a real-valued unit ve
tor situated in �, and by D an arbitraryreal-valued s
alar. Then the imaginary-valued ve
tor p� has the form:p� = iDe : (37)Using (13), the 
omplex-valued slowness ve
tor p readsp = �n� + iDe ; with n� � e = 0 : (38)Here � is a generally 
omplex-valued root of the algebrai
 equation of the sixth degreewith the 
omplex-valued 
oeÆ
ients:det[aijkl(�n�j + iDej)(�n�l + iDel)� Æik℄ = 0 : (39)In equation (39), aijkl, D, n� and e are given, aijkl is real-valued or 
omplex-valued, D,n� and e are real-valued.On
e � is determined, the propagation and attenuation ve
tors P and A readP = n�Re� ; A = n�Im� +De : (40)An important property of this spe
i�
ation is that the propagation ve
tor P is perpendi
-ular to �, and the plane � represents a wavefront of the plane wave under 
onsideration.The real-valued travel time is 
onstant on �.193



The expressions for magnitudes of ve
tors P and A and for the unit ve
tors nP andnA follow simply from (16), and (17). For nP we get from (17), nP = �Pn�, where�P = Re�=jRe�j. The phase velo
ity C readsC = 1=jRe�j ; (41)and the attenuation angle 
 is given by the relation
os 
 = �P Im�[(Im�)2 +D2℄1=2 : (42)A
tually, for p� given by (37), the 
omponental spe
i�
ation of the slowness ve
tor rep-resents the mixed spe
i�
ation of the slowness ve
tor. The mixed spe
i�
ation of theslowness ve
tor was used intensively in a number of papers by �Cerven�y and P�sen�
��k(2005a,b, 2008, 2011). See also Se
tions 2 and 3.2.4.3 Coplanar 
ase: Rep� parallel to Imp�We again denote by e a real-valued unit ve
tor along � and 
onsider the ve
tor p� in thefollowing form: p� = Ze : (43)Here Z is an arbitrary 
omplex-valued s
alar. Both real and imaginary parts of p� areparallel, but they may have opposite orientation. The slowness ve
tor p is given by therelation, see (13): p = �n� + Ze ; with n� � e = 0 : (44)The generally 
omplex-valued quantity � is a root of the algebrai
 equation of the sixthdegree: det[aijkl(�n�j + Zej)(�n�l + Zel)� Æik℄ = 0 : (45)The propagation and attenuation ve
tors P and A are then given by the relationsP = n�Re� + eReZ ; A = n�Im� + eImZ : (46)The magnitudes of P and A readjPj = [(Re�)2 + (ReZ)2℄1=2 ; jAj = [(Im�)2 + (ImZ)2℄1=2 : (47)It follows immediately from (46) that we deal with the 
oplanar 
ase. An importantproperty of the 
oplanar 
ase is that all quantities are fully 
on�ned to the plane spe
i�edby real-valued unit ve
tors n� and e. The phase velo
ity C and the attenuation angle 
are given by relations C = 1=[(Re�)2 + (ReZ)2℄1=2 ; (48)
os 
 = [(Re�)(Im�) + (ReZ)(ImZ)℄=jPjjAj : (49)Equations derived in this se
tion for the 
oplanar 
ase are generalizations of thosederived in Se
tion 4.1 for the real-valued p�, and in Se
tion 4.2 for the imaginary valuedp�. A
tually, we 
an de�ne Z as Z = S + iD.194



4.4 Cartesian 
omponents of p�We introdu
e two mutually perpendi
ular real-valued unit ve
tors e1; e2 in the plane �in su
h a way that the three ve
tors e1; e2; e3 = n� form a right-handed triplet of unitve
tors. Then, we 
an spe
ify p� asp� = p�1 e1 + p�2 e2 ; (50)where p�1 and p�2 are, in general, 
omplex-valued. Consequently, the slowness ve
tor p
an be expressed as follows, see (13),p = �n� + p�1 e1 + p�2 e2 : (51)Equation (14) for � then readsdet[aijkl(�n�j + p�1 e1j + p�2 e2j)(�n�l + p�1 e1l + p�2 e2l)� Æik℄ = 0 : (52)Here n�; e1; e2 are known real-valued unit ve
tors, p�1 and p�2 are the given 
omplex-valued 
omponents of p�. Quantity � is a generally 
omplex-valued root of the algebrai
equation (52) of the sixth degree with 
omplex-valued 
oeÆ
ients.On
e � is determined, the propagation and attenuation ve
tors P and A are given byrelations P = n�Re� + e1Rep�1 + e2Rep�2 ;A = n�Im� + e1Imp�1 + e2Imp�2 : (53)This yields jPj = [(Re�)2 + (Rep�1 )2 + (Rep�2 )2℄1=2 ;jAj = [(Im�)2 + (Imp�1 )2 + (Imp�2 )2℄1=2 : (54)The unit ve
tors nP and nA along P and A are given by relations (17) with p� given by(50). The relations for the phase velo
ity C and attenuation angle 
 readC = 1=[(Re�)2 + (Rep�1 )2 + (Rep�2 )2℄1=2 ; (55)
os 
 = [(Re�)(Im�) + (Rep�1 )(Imp�1 ) + (Rep�2 )(Imp�2 )℄=jPjjAj : (56)It may be useful to 
hoose the dire
tion of the ve
tor e1 so that it spe
i�es the ori-entation of the ve
tor Rep�. This implies Rep�2 = 0. Then the propagation ve
tor P is
on�ned to the plane (n�; e1), and p� is given by the relationp� = p�1 e1 + iImp�2 e2 : (57)Here p�1 is a 
omplex-valued s
alar, p�1 = S + iD1, and p�2 is a purely imaginary s
alar,p�2 = iD2. Here S is the apparent slowness along the ve
tor e1, D1 and D2 are theappropriate inhomogeneity parameters along e1 and e2. The slowness ve
tor p is thengiven by the relation p = �n� + p�1 e1 + iD2e2 : (58)195



The 
omplex-valued quantity � is a root of equation (52), in whi
h we put Rep�2 = 0. Allother relevant equations are given by (53)-(56) with Rep�2 = 0.We remind the reader that the propagation ve
tor P is 
on�ned to the plane (n�; e1),but the attenuation ve
tor A points generally outside this plane. For this reason, wespeak of the non-
oplanar 
ase. The 
oplanar 
ase o

urs when D2 = 0.5 Spe
ial 
ases of mediaAs mentioned above, equations of Se
tions 2, 3 and 4 are valid for any anisotropi
 orisotropi
, vis
oelasti
 or perfe
tly elasti
 media. In general, the determination of theslowness ve
tor p requires numeri
al solution of an algebrai
 equation of the sixth degreewith 
omplex-valued 
oeÆ
ients to determine the generally 
omplex-valued quantity �.In some spe
ial 
ases, the 
omputations simplify, and the solution of the algebrai
equation of the sixth degree 
an be found in a simple analyti
 form. Important examplesare the isotropi
 vis
oelasti
 media, where all formulae are parti
ularly simple. Analyti
expressions 
an be also obtained for SH waves propagating in a plane of symmetry of amono
lini
 (orthorhombi
, hexagonal) vis
oelasti
 medium. In both 
ases, we 
an givesimple analyti
 expressions for all 
omputed quantities.5.1 Isotropi
 vis
oelasti
 mediaFor isotropi
 vis
oelasti
 media, aijkl are given by the well-known relationaijkl = ��ÆijÆkl + �� (ÆikÆjl + ÆilÆjk) : (59)Here �=� and �=� are density-normalized 
omplex-valued Lam�e's vis
oelasti
 moduli. Foraijkl given by (59), equation (6) fa
torizes:det[aijklpjpl � Æik℄ = (�2pipi � 1)(�2pkpk � 1)2 = 0 ; (60)where �2 = �+ 2�� ; �2 = �� : (61)Here � is the 
omplex-valued velo
ity of P waves, � is the 
omplex-valued velo
ity of Swaves. Consequently, we 
an write the 
onstraint relation for both P and S waves in thesame form pipi = 1=V 2 ; (62)where V 2 = �2 for P wave ;V 2 = �2 for S wave : (63)196



We now 
onsider an arbitrary plane �, and an arbitrarily 
hosen 
omplex-valued ve
torp�, situated in the plane �. Inserting the 
omponental spe
i�
ation (13) into (62), weobtain �2 + p� � p� = 1=V 2 : (64)This yields a very simple expression for �:� = �[1=V 2 � p� � p�℄1=2 : (65)It is 
ommon to express 1=V 2 in terms of ReV 2 and of the quality fa
tor Q given bythe relation Q�1 = �Im(V 2)=Re(V 2) : (66)From positive de�niteness of the 6� 6 matrix AR and positive de�niteness or zero of the6 � 6 matrix AI , whi
h form the matrix AR � iAI of vis
oelasti
 moduli in the Voigtnotation, we have ReV 2 > 0 and ImV 2 � 0. Thus the quality fa
tor is a real-valuedpositive s
alar, whi
h 
an be
ame in�nite if ImV 2 = 0. For V = �, we get the qualityfa
tor for P waves, for V = � for S waves. Using Q, we 
an express V 2 in the followingway: V 2 = Re(V 2)(1� i=Q) (67)whi
h �nally yields: 1V 2 = 1 + iQ�1ReV 2(1 +Q�2) : (68)Inserting (65) into (13), we obtain the 
omplete analyti
al expression for the slownessve
tor p: p = �(1=V 2 � p� � p�)1=2n� + p� ; (69)where 1=V 2 is given by (68), and p� by various expression given in Se
tion 4.The derivation of other relevant quantities is easy. For the propagation and attenuationve
tors P and A we get from (15):P = �Re(1=V 2 � p� � p�)1=2n� +Rep� ;A = �Im(1=V 2 � p� � p�)1=2n� + Imp� : (70)Magnitudes of ve
tors P and A read:jPj = [(Re(1=V 2 � p� � p�)1=2)2 + (Rep�)2℄1=2 ;jAj = [(Im(1=V 2 � p� � p�)1=2)2 + (Imp�)2℄1=2 : (71)The phase velo
ity C and the attenuation angle 
os 
 are given by equations (10) and (9),respe
tively.We shall now 
onsider several important examples of the spe
i�
ation of p� for isotrop-i
 vis
oelasti
 mediaa) Real-valued p�. 197



We 
onsider p� = Se, where S and e have the same meaning as in (31). Then� = �(1=V 2 � S2)1=2 and p = �(1=V 2 � S2)1=2n� + Se : (72)The determination of other expressions is straightforward. The attenuation ve
tor A =�Im(1=V2 � S2)1=2n� is always perpendi
ular to the plane �. It may be non-vanishingeven in perfe
tly elasti
 isotropi
 media when 1=V 2 is real-valued. In this 
ase, we obtainA = �(S2 � 1=V 2)1=2n� for 1=V 2 < S2 and speak of evanes
ent waves. For 1=V 2 > S2,we obtain A = 0.b) Imaginary-valued p�We 
onsider p� = iDe, where D and e have the same meaning as in (37). Then� = �(1=V 2 +D2)1=2 and the slowness ve
tor p is given by the relationp = �(1=V 2 +D2)1=2n� + iDe : (73)In this 
ase the plane � again represents the wavefront of the plane wave under 
onsid-eration. This spe
i�
ation of p� 
orresponds to the mixed spe
i�
ation of the slownessve
tor, whi
h was studied in detail by �Cerven�y and P�sen�
��k (2005a,b).
) Coplanar 
aseWe use p� = Ze, where Z is an arbitrary 
omplex-valued s
alar, see (43). Then� = �(1=V 2 � Z2)1=2 and the slowness ve
tor p is given by the relationp = �(1=V 2 � Z2)1=2n� + Ze : (74)In this and previous 
ases, both the propagation and attenuation ve
tors P and A are
on�ned to the plane spe
i�ed by unit ve
tors n� and e, and thus we deal with the
oplanar 
ase.d) Homogeneous plane waveVery interesting results are obtained for p� given by the relation p� = Ze, withZ = aV �1 ; (75)where a is a real valued s
alar, 0 � a2 � 1, and V is the 
omplex-valued velo
ity given in(68). The quantity � is then given by the relation� = �[ 1V 2 � a2 1V 2 ℄1=2 = � 1V p1� a2 : (76)The slowness ve
tor p = �n� + p� 
an be expressed as follows:p = 1V NH ; (77)with NH = �p1� a2n� + ae : (78)198



Here NH is a real-valued unit ve
tor, situated in the plane given by n� and e. Thepropagation and attenuation ve
tors P and A readP = Re(1=V )NH ; A = Im(1=V )NH : (79)Equations (79) show that ve
tors P and A are parallel. In other words, the plane waveunder 
onsideration is homogeneous.To 
on
lude: When we take p� = aV �1e on the plane �, we obtain a homogeneousplane wave propagating from �. The dire
tion of propagation NH of this homogeneousplane wave is 
ontrolled by the real-valued s
alar a, see (78). For a = 0, NH = �n�; fora = �1, NH = �e.e) Non-
oplanar 
aseSimilarly as in Se
tion 4.4, we 
an introdu
e two mutually perpendi
ular real-valuedunit ve
tors e1; e2 in the plane � in su
h a way that the three ve
tors e1; e2; e3 = n�form a right-handed triplet of unit ve
tors. We 
an introdu
e p� in the form of (50). Allequations then remain the same as in Se
tion 4.4, only the expression for � 
an be nowwritten expli
itly: � = [ 1V 2 � p�1 � p�1 � p�2 � p�2 ℄1=2 : (80)Both p�1 and p�2 may be 
hosen arbitrarily and may be 
omplex-, real-, imaginary-valuedor zero. For example, for p�2 = 0, we obtain the 
oplanar 
ase in the plane (n�; e1).It may be useful to generalize slightly the 
oplanar 
ase, 
onsidering general 
omplex-valued p�1 , but purely imaginary p�2 , p�2 = iD2e2 : (81)This yields the formula (57) for p�. For � we have in this 
ase:� = [1=V 2 � p�1 � p�1 +D22℄1=2 (82)and p is given by (58). The propagation ve
tor P is fully 
on�ned to the plane (n�; e1):P = Re� n� + Se1 ; (83)but the attenuation ve
tor A may point outside this plane:A = Im� n� +D1e1 +D2e2 : (84)We speak of the non-
oplanar 
ase.5.2 SH waves in a plane of symmetryof mono
lini
 vis
oelasti
 mediaThe simplest 
ase of anisotropi
 media, whi
h 
an be solved analyti
ally, is the 
ase ofSH waves propagating in a plane of symmetry of a mono
lini
 (orthorhombi
, hexagonal)199



vis
oelasti
 medium. This 
ase is very useful for simple illustration of di�eren
es betweenanisotropi
 and isotropi
 vis
oelasti
 media.We 
hoose the Cartesian 
oordinate system x1; x2; x3 in su
h a way that the plane ofsymmetry �S 
orresponds to the 
oordinate plane x1; x3. Both real-valued and imaginary-valued parts of the polarization ve
tor U of the SH plane wave are perpendi
ular to theplane �S . In the plane of symmetry, the 
onstraint relation reads (�Cerven�y and P�sen�
��k,2005a; Car
ione, 2007): A66p21 + A44p23 + 2A46p1p3 = 1 : (85)Here A66, A44 and A46 are the 
omplex-valued density-normalized vis
oelasti
 moduli,in the Voigt notation. For A46 = 0, the mono
lini
 vis
oelasti
 medium redu
es to theorthorhombi
 or hexagonal medium.We now introdu
e an arbitrary straight-line l in the plane �S, and the proje
tion ofthe slowness ve
tor p� along l. We assume that p� is known; it may be 
omplex-valued,real-valued or imaginary valued.The 
omponental spe
i�
ation (13) of the slowness ve
tor in the plane (x1; x3) yields:p1 = �n�1 + p�1 ; p3 = �n�3 + p�3 : (86)Inserting (86) into (85) yields a quadrati
 equation for �. Its solution yields two roots�1;2: �1;2 = �E22=�22 � [1=�22 � (p�1 n�3 � n�1 p�3 )2�=�222℄1=2 ; (87)where �22 = A66(n�1 )2 + A44(n�3 )2 + 2A46n�1 n�3 ;E22 = A66n�1 p�1 + A44n3p�3 + A46(n�1 p�3 + n�3 p�1 ) ; (88)F22 = A66(p�1 )2 + A44(p�3 )2 + 2A46p�1 p�3 ;and � = A44A66 � A246 : (89)Both propagation ve
tor P and attenuation ve
torA are situated in the plane of symmetry�S, P1 = Re� n�1 +Rep�1 ; P3 = Re� n�3 +Rep�3 ;A1 = Im� n�1 + Imp�1 ; A3 = Im� n�3 + Imp�3 : (90)The phase velo
ity C of the plane wave under 
onsideration readsC = 1=[(Re�)2 + (Rep�1 )2 + (Rep�3 )2℄1=2 ; (91)and the attenuation angle 
 
an be 
al
ulated using the relation
os 
 = [Re�Im� +Rep�1 Imp�1 +Rep�3 Imp�3 ℄=jPjjAj : (92)
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6 Appli
ation of mixed and 
omponentalspe
i�
ations of the slowness ve
torin the re
e
tion/transmission pro
essIn this se
tion, we dis
uss the appli
ation of both mixed and 
omponental spe
i�
ationsof the slowness ve
tor in the pro
ess of re
e
tion and transmission of plane waves at aplanar interfa
e � separating two homogeneous vis
oelasti
 media.It is useful to spe
ify the slowness ve
tor pin
 of the in
ident wave by the mixedspe
i�
ation. In the mixed spe
i�
ation, the slowness ve
tor pin
 is spe
i�ed with respe
tto a plane wavefront �W of the in
ident wave. We denote by nW the unit normal to theplane �W and by pW the proje
tion of the slowness ve
tor pin
 to �W . The ve
tor pW isimaginary valued, be
ause the travel time along �W is 
onstant and thus the real part ofpW is zero.Consider now a plane wave with the slowness ve
tor pin
, in
ident at a planar interfa
e�. The ve
tor p�tangent to � 
an be then 
omputed by proje
ting pin
 into the plane �.The slowness ve
tor prt of a generated (re
e
ted, transmitted) wave is then determinedfrom p� using the 
omponental spe
i�
ation.In the following, we work with quantities �in
 and �rt. The former is always related tothe mixed spe
i�
ation, the latter to the 
omponental spe
i�
ation of the slowness ve
tor.6.1 Anisotropi
 vis
oelasti
 mediaWe denote by ain
ijkl the 
omplex-valued density-normalized vis
oelasti
 moduli in the half-spa
e in whi
h the in
ident wave propagates, and by artijkl the vis
oelasti
 moduli in thehalfspa
e in whi
h the sele
ted R/T wave propagates. For re
e
ted waves, the moduliartijkl are identi
al with ain
ijkl. As mentioned above, the ve
tor pW is purely imaginary. Inthe mixed spe
i�
ation, used for the in
ident wave, it is given by a simple relationpW = iDm : (93)The real-valued unit ve
tor m is perpendi
ular to nW , but otherwise it 
an be arbitrarilyoriented in the plane �W . The real-valued s
alar D, 
alled the inhomogeneity parameter,is a proje
tion of the attenuation ve
tor A = Impin
 to the plane �W . Then the mixedspe
i�
ation of the slowness ve
tor pin
 is given by the relation, see (11),pin
 = �in
nW + iDm : (94)Here �in
 is a root of an algebrai
 equation of the sixth degree with 
omplex-valued
oeÆ
ients, see (12):det[ain
ijkl(�in
nWj + iDmj)(�in
nWl + iDml)� Æik℄ = 0 : (95)Note that the parameters of in
ident plane waves, whi
h should be given, are the real-valued unit ve
tors nW and m, and the real-valued inhomogeneity parameter D: �1 <D <1. 201



Consider now a planar interfa
e �, de�ned by its normal n�. We introdu
e two real-valued ve
tors N� and M�, given by the relationsN� = n� � (nW � n�) = nW � n�(nW � n�) ;M� = n� � (m� n�) =m� n�(m � n�) : (96)These ve
tors represent proje
tions of ve
tors nW and m into the plane �. Note that theve
tors N� and M� are generally neither unit nor mutually perpendi
ular.The proje
tion of the 
omplex-valued slowness ve
tor pin
 of the in
ident wave intothe planar interfa
e � is given by the relationp� = �in
N� + iDM� : (97)The slowness ve
tor prt of the re
e
ted/transmitted generated at the planar interfa
e �is then given by the relation prt = �rtn� + p� ; (98)where p� is given by (97) and �rt is a root of an algebrai
 equation of the sixth degree:det[artijkl(�rtn�j + p�j )(�rtn�l + p�l )� Æik℄ = 0 : (99)The above equations 
an be expressed in many alternative forms. They are validfor arbitrary density-normalized vis
oelasti
 parameters ain
ijkl and artijkl, both 
omplex-valued and/or real-valued), for 
oplanar and non-
oplanar 
ases, for homogeneous andinhomogeneous plane waves, for arbitrarily 
hosen in
ident plane wave and for arbitrarilyoriented planar interfa
e �.On
e the slowness ve
tor of the generated wave is determined, we 
an simply 
al
ulatethe propagation and attenuation ve
tors, and the phase velo
ity C and the attenuationangle 
 of this wave.The advantage of the des
ribed approa
h is that it does not use the attenuation angle
 for the spe
i�
ation of the slowness ve
tor of the in
ident wave. The plane waves
orresponding to a parti
ular attenuation angle 
 may not exist (�Cerven�y and P�sen�
��k,2011). The approa
h based on the inhomogeneity parameter D of the in
ident wave fullyavoids this problem.6.2 Isotropi
 vis
oelasti
 mediaIn vis
oelasti
 isotropi
 media, the pro
edure remains the same as in vis
oelasti
 anisotrop-i
 media, but solutions of algebrai
 equations of sixth degree 
an be given in an analyti
form. The 
omplex-valued velo
ities of plane waves are denoted by V , as indi
ated in (63)with (61). We use again the supers
ripts \in
" and \rt" to denote quantities related toin
ident and R/T waves.. Thus, V in
 is the 
omplex-valued velo
ity of the in
ident wave,and V rt the 
omplex-valued velo
ity of sele
ted R/T wave. The velo
ities V in
 and V rtmay, of 
ourse, 
orrespond to P or S waves, a

ording to the problem under 
onsideration.202



All equations of Se
tion 6.1 remain exa
tly the same even for isotropi
 media, only thealgebrai
 equations of the sixth degree (95) for in
ident wave and (99) for R/T wave arerepla
ed by their analyti
al solutions. For a sele
ted in
ident wave (P or S), the solutionof (95) is (�Cerven�y and P�sen�
��k, 2011; Eq.23):�in
 = �[(1=V in
)2 +D2℄1=2 : (100)This expression is indeed very simple. For a sele
ted re
e
ted/transmitted wave, thesolution of (99) following from (65) and (97) reads:�rt = �[(1=V rt)2 � (�in
N� + iDM�)2℄1=2 : (101)In our problem, only one of the signs used in front of the 
omplex-valued square roots in(100) and (101) has a physi
al meaning. The determination of the proper sign is a very
ompli
ated problem in the study of re
e
tion/transmission 
oeÆ
ients of plane waves ata planar interfa
e separating two isotropi
 vis
oelasti
 media. There is a broad literaturedevoted to it, see, e.g., Krebes (1983), Ruud (2006), Krebes and Daley (2007), �Cerven�y(2007), Sidler, Car
ione and Holliger (2008), et
. This problem, however, is not a subje
tof this arti
le.The expressions for �rt and prt may be given in many alternative forms. For example,we 
an express the ve
tors N� and M� in terms of simpler ve
tors n�; nW and m. From(96) we get: N�N� = 1� (n� � nW )2 ;M�M� = 1� (n� �m)2 ;N�M� = �(n� � nW )(n� �m) : (102)This yields: (�in
N� + iDM�)2 = (1=V in
)2 � [�in
(n� � nW ) + iD(n� �m)℄2 : (103)Inserting (103) into (101), we obtain�rt = �f(1=V rt)2 � (1=V in
)2 + [�in
(n� � nW ) + iD(n� �m)℄2g1=2 : (104)The slowness ve
tor prt of the re
e
ted/transmitted wave is given by the relation, see eq.(98): prt = �rtn� + �in
N� + iDM� : (105)Here �rt is given by (104), �in
 by (100), N� and M� by (96).The expression (104) simpli�es 
onsiderably for monotypi
 re
e
ted waves, as V rt =V in
 in this 
ase, and (104) yields:�rt = �f[�in
(n� � nW ) + iD(n� �m)℄2g1=2 : (106)Another useful form of expressions for �rt and prt is based on a slightly modi�edspe
i�
ation of the ve
tor pW . Instead of (100), we usepW = iDm = iD1m1 + iD2m2 ; (107)203



where m2 = (n� � nW )=jn� � nW jm1 = nW �m2 : (108)The mutually perpendi
ular unit ve
tors m1 and m2 are situated in the plane �W . Theve
tor m2 is parallel to the interse
tion of the planes �W and �, i.e., it is situated in bothplanes �W and �. The ve
tors m1, m2 and nW form a triplet of mutually perpendi
ularunit ve
tors. The quantity �in
 is then given by the relation�in
 = �[(1=V in
)2 +D21 +D22℄1=2 ; (109)and the expression for the slowness ve
tor pin
 of the in
ident wave reads:pin
 = �in
nW + iD1m1 + iD2m2 : (110)Proje
ting nW ; m1 and m2 on the plane �, we getp� = �in
N� + iD1M�1 + iD2M�2 ; (111)where N� is given by (96), and M�1 , M�2 by analogous relationsM�1 = n� � (m1 � n�) =m1 � n�(m1 � n�) ;M�2 = n� � (m2 � n�) =m2 � n�(m2 � n�) =m2 : (112)The se
ond relation M�2 =m2 in (112) is important. It is a 
onsequen
e of the fa
t thatm2 is introdu
ed as ve
tor perpendi
ular to ve
tors nW and n�.Now we rewrite �rt given by (104), using the new spe
i�
ation of iDm, see (107). ForiD(n�m) we obtainiD(n� �m) = iD1(n� �m1) + iD2(n� �m2) = iD1(n� �m1) : (113)Inserting (113) into (104) yields the �nal expression for �rt:�rt = �f(1=V rt)2 � (1=V in
)2 + [�in
(n� � nW ) + iD1(n� �m1)℄2g1=2 : (114)The 
orresponding slowness ve
tor of the R/T wave is given by the relation, see (105):prt = �rtn� + �in
N� + iD1M�1 + iD2M�2 : (115)Here N�, M�1 and M�2 
an be expressed in terms of n�; nW ; m1 and m2 using (96) and(112). It is interesting to note that the expression (114) for �rt does not expli
itly dependon D2. The quantity D2 is in
luded only in expression for �in
, given by (109).Let us summarize the �nal results for the non-
oplanar 
ase. Consider the slownessve
tor pin
 of the in
ident wave, spe
i�ed by relation (110), with �in
 given by (109). Thequantities D1 and D2 are the inhomogeneity parameters in the plane spe
i�ed by ve
torsn�; nW , and in the dire
tion perpendi
ular to this plane, respe
tively. The inhomogeneityparameter D2 
ontrols the degree of non-
omplanarity of the in
ident wave. The R/T204



plane wave is also non-
omplanar in this 
ase. The slowness ve
tor prt of the R/T waveis given by the relation (115) with �rt given by (114) and �in
 by (109).All the above equations simplify 
onsiderably for the 
oplanar 
ase, whi
h we obtainby spe
ifying D2 = 0 in the equations for the non-
oplanar 
ase. For the slowness ve
torof the in
ident wave we get from (110):pin
 = �in
nW + iD1m1 ; (116)where �in
 = �[(1=V in
)2 +D21℄1=2 ; (117)see (109). For the slowness ve
tor of the R/T wave we get from (115):prt = �rtn� + �in
N� + iD1M�1 ; (118)where �rt is given by (114). Note that the slowness ve
tor of the R/T wave is 
oplanar ifthe slowness ve
tor of the in
ident wave is 
oplanar.Finally, we 
onsider a homogeneous in
ident wave. In this 
ase D1 = D2 = 0. Forthe slowness ve
tor pin
 of the in
ident plane wave we get from (110) and (109):pin
 = �in
nW = �nW=V in
 : (119)For the slowness ve
tor of the R/T wave we get from (115) and (109):prt = �rtn� �N�=V in
 ; (120)where �rt = �f(1=V rt)2 � (1=V in
)2[1� (n� � nW )2℄g1=2 : (121)Note that n� � nW 
orresponds to 
os i, where i is the angle of in
iden
e. Consequently,1� (n� � nW )2 = sin2 i.It should be emphasized that an in
ident homogeneous plane wave does not ne
essarilygenerate a homogeneous R/T plane wave.7 Con
luding remarksThe derived equations for the 
omponent � of the slowness ve
tor p into the normaln� to a plane � 
an be used for homogeneous and inhomogeneous time-harmoni
 planewaves, propagating in anisotropi
 or isotropi
, vis
oelasti
 or perfe
tly elasti
 media. Theposition of the plane � may be arbitrary and the known ve
tor p� situated in the plane� may be also arbitrarily oriented in the plane � and may be 
omplex-valued, real-valuedor imaginary-valued.The des
ribed formalism, based on the 
omponental spe
i�
ation of the slowness ve
-tor, 
an be suitably used to determine the re
e
tion/transmission 
oeÆ
ients of planewaves at a plane interfa
e � between two vis
oelasti
 anisotropi
 halfspa
es. For the in-
ident wave, the general mixed spe
i�
ation (11) of the slowness ve
tor pin
 may be used.205



The ve
tor p� is then determined by proje
ting pin
 into the plane �. The slowness ve
-tors of generated waves are then 
al
ulated from p� using the 
omponental spe
i�
ation.From appropriate interfa
e 
onditions, we then determine re
e
tion/transmission 
oeÆ-
ients. The detailed algorithms with relevant 
omputations would in
rease the length ofthis paper inadmissibly, and will be dis
ussed elsewhere.The 
omputation of re
e
tion/transmission 
oeÆ
ients of plane waves at a plane in-terfa
e between two vis
oelasti
 halfspa
es in the frequen
y domain, however, relies on thevalidity of the 
orresponden
e prin
iple. In the 
orresponden
e prin
iple, the 
omplex-valued vis
oelasti
 moduli are used in the frequen
y domain. For a more detailed dis-
ussion of the 
orresponden
e prin
iple, see Bland (1960), Car
ione (2007), Bor
herde(2009), and Morozov (2011). Morozov (2011) 
laims that the 
orresponden
e prin
iple isrigorously appli
able only to boundless uniform media and that it should be used with
aution when applied to heterogeneous 
ases. We believe that the appli
ation of 
ompo-nental spe
i�
ation of the slowness ve
tor would be useful in further illumination of theproblem.A
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