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Summary

Perturbations of elastic moduli and density are decomposed into Gabor functions.
A short–duration broad–band incident wavefield with a smooth frequency spectrum
is considered. The wavefield scattered by the perturbations is then composed of waves
scattered by the individual Gabor functions. The scattered waves are estimated using
the first–order Born approximation with the paraxial ray approximation. For a partic-
ular source, each Gabor function generates at most a few scattered Gaussian packets
propagating in determined directions. Each of these scattered Gaussian packets is sensi-
tive to just a single linear combination of the perturbations of elastic moduli and density
corresponding to the Gabor function. This information about the Gabor function is lost
if the scattered Gaussian packet does not fall into the aperture covered by the receivers
and into the legible frequency band.

Introduction

We study how the perturbations of a generally heterogeneous isotropic or anisotropic
structure manifest themselves in the wavefield, and which perturbations can be detected
within a limited aperture and a limited frequency band. We consider a smoothly varying
heterogeneous generally anisotropic background medium, with an isotropic background
medium as a special case. We consider generally anisotropic perturbations of the
medium, with isotropic perturbations as a special case. We decompose the perturbations
of elastic moduli and density into Gabor functions, and approximate the waves scattered
by individual Gabor functions analytically. Refer to Klimeš (2007) for more details.

Gabor representation of medium perturbations

We consider infinitesimally small perturbations δcijkl(x) and δ̺(x) of elastic moduli
cijkl(x) and density ̺(x). We decompose the perturbations into Gabor functions gα(x)
indexed here by α:

δcijkl(x) =
∑

α

cα
ijkl gα(x) , δ̺(x) =

∑

α

̺αgα(x) ,

gα(x) = exp[ikαT(x−xα)− 1
2
(x−xα)TKα(x−xα)] .

Gabor functions gα(x) are centred at various spatial positions xα and have various
structural wavenumber vectors kα. The wavefield scattered by the perturbations is
then composed of waves uα

i (x, t) scattered by individual Gabor functions:

δui(x, t) =
∑

α

uα
i (x, t) .

Submitted to the 80th Annual Meeting of Society of Exploration Geophysicists, Denver, USA, October 17–22, 2010.
In: Seismic Waves in Complex 3–D Structures, Report 20 (Department of Geophysics, Charles University, Prague, 2010), pp. 29–34

29



Figure 1. A single Gabor func-
tion gα(x) centred at point xα.

Figure 2. Broad–band wave in-
cident at the Gabor function.

Figure 3.

Scattered wave uα

i
(x, t).

Applied approximations

We assume that a short–duration broad–band wavefield with a smooth frequency spec-
trum, incident at the Gabor function, can be expressed in terms of the amplitude and
travel time. We approximate each wave uα

i (x, t) scattered by one Gabor function by
the first–order Born approximation, which describes exactly the first–order sensitivity
of the wavefield to the infinitesimally small structural perturbations. We apply the
ray–theory approximation to the Green tensor in the Born approximation. We use
the high–frequency approximation of spatial derivatives of both the incident wave and
the Green tensor. In this high–frequency approximation, we neglect the derivatives of
the amplitude, which are of order 1/frequency with respect to the derivatives of the
travel time. We make use of the paraxial ray approximation of the incident wave in the
vicinity of central point xα of the Gabor function, and of the two–point paraxial ray
approximation of the Green tensor at point xα and at the receiver. The paraxial ray ap-
proximation consists in a constant amplitude and in the second–order Taylor expansion
of the travel time. The above mentioned approximations enable us to calculate wave
uα

i (x, t), scattered by the Gabor function, analytically (Klimeš, 2007).

Sensitivity Gaussian packets

Considering the above approximations, wave uα
i (x, t) scattered by one Gabor func-

tion is composed of a few (i.e., 0 to 5 as a rule) Gaussian packets. Each of these
“sensitivity” Gaussian packets has a specific frequency and propagates from point
xα in a specific direction, see Figures 1–3. Each of these sensitivity Gaussian pack-
ets scattered by Gabor function gα(x) is sensitive to just a single linear combination∑

ijkl c
α
ijkl Ei Pj ek pl−̺α

∑
i Ei ei of perturbation coefficients cα

ijkl and ̺α corresponding
to the Gabor function. Here Pi and Ei are the slowness vector and the unit polarization
vector of the incident wave, and pi and ei are the slowness vector and the unit polar-
ization vector of the sensitivity Gaussian packet. This information about the Gabor
function is lost if the sensitivity Gaussian packet does not fall into the aperture cov-
ered by the receivers and into the legible frequency band. The situation improves with
the increasing number of differently positioned sources. If we have many sources, the
sensitivity Gaussian packets propagating from a Gabor function may be lost during the
measurement corresponding to one source, but recorded during the measurement cor-
responding to another, differently positioned source. However, the problem is not only
to record the Gaussian packets from a Gabor function, but to record them in as many
different measurement configurations as to resolve perturbation coefficients cα

ijkl and ̺α.
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Figure 4. P–wave velocity in the Marmousi structure.

Figure 5. P–wave velocity in the velocity model for ray tracing.

Figure 6. Velocity difference between the Marmousi structure and the velocity model.

Marmousi example

We consider the distribution of the P–wave velocity in the Marmousi structure, see
Figure 4. The velocity model for ray tracing must be smooth and is displayed in
Figure 5. The velocity difference between the Marmousi structure and the velocity
model is displayed in Figure 6.

For the decomposition of the velocity difference, we generate the set of Gabor
functions gα(x) with matrices Kα optimized according to Klimeš (2008b). We obtain
67014 Gabor functions within the selected wavenumber domain. Refer to Figure 7 for 14
selected Gabor functions. We then decompose the velocity difference from Figure 6 into
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Figure 7. Example showing 14 ones of 67014 optimized Gabor functions used to decompose the
velocity difference.

Figure 8. Sum of the Gabor functions influencing the seismograms recorded for shot 70.

the sum of Gabor functions. For each shot, we calculate the quantities describing the
paraxial approximation of the incident P wave at all central points of Gabor functions.
For each shot and each Gabor function, we calculate the initial conditions for the
corresponding sensitivity Gaussian packets which form the scattered wave. We consider
Gaussian packets corresponding to the given frequency band only. We then trace the
central ray of each sensitivity Gaussian packet. If a sensitivity Gaussian packet arrives
to the receiver array within the registration time, the recorded wavefield contains
information on the corresponding Gabor function. The sum of the Gabor functions
influencing the seismograms recorded for shot 70 is displayed in Figure 8.

The velocity difference from Figure 6 can be decomposed into the part to which
the recorded seismograms are not sensitive and into the part to which the recorded
seismograms are sensitive. The sum of the Gabor functions influencing the seismograms
collected from all shots is displayed in Figure 9. This is the part of the velocity
difference to which the recorded seismograms are sensitive. The remaining part of
the velocity difference, influencing no recorded seismogram within the first–order Born
approximation, is displayed in Figure 10. This part of the velocity difference cannot be
recovered from the Marmousi seismograms.
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Figure 9. Sum of the Gabor functions influencing the seismograms collected from all shots.

Figure 10. Part of the velocity difference from Figure 6 influencing no recorded seismogram.

Conclusions

Perturbations of elastic moduli and density can be decomposed into Gabor functions.
A short–duration broad–band wave with a smooth frequency spectrum incident at each
Gabor function generates at most a few scattered Gaussian packets. Each Gaussian
packet has a specific frequency and propagates in a specific direction. Refer to Klimeš
(2007) for the relevant equations. Each Gaussian packet is sensitive to a single linear
combination of the perturbations of elastic moduli and density corresponding to the
Gabor function. This information about the Gabor function is lost if the Gaussian
packet does not fall into the aperture covered by the receivers and into the legible
frequency band.

The sensitivity Gaussian packets can enable to replace migrations by true linearized
inversion of reflection seismic data. For the algorithm of the linearized inversion of the
complete set of seismograms recorded for all shots refer to Klimeš (2008a).
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Klimeš, L. (2008a): Stochastic wavefield inversion using the sensitivity Gaussian pack-
ets. In: Seismic Waves in Complex 3–D Structures, Report 18, pp. 71–85, Dep.
Geophys., Charles Univ., Prague, online at “http://sw3d.cz”.

Klimeš, L. (2008b): Optimization of the structural Gabor functions in a homogeneous
velocity model for a zero–offset surface seismic reflection survey. In: Seismic Waves
in Complex 3–D Structures, Report 18, pp. 115–127, Dep. Geophys., Charles Univ.,
Prague, online at “http://sw3d.cz”.

34


