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Summary

We present approximate formulae for the plane-wave, displacement reflection/transmis-
sion (R/T) coefficients for interfaces of arbitrary contrast, separating two homogeneous,
weakly anisotropic media. In deriving them, we use first-order quantities, with which
we work when using first-order ray tracing (FORT) for inhomogeneous anisotropic me-
dia. Specifically, the phase velocities, slowness and polarization vectors used are of the
first-order with respect to the deviations of anisotropy from isotropy. The derived R/T
coefficients transform an incident P wave into a reflected/transmitted P or coupled S
wave. Coefficients can be computed for any incidence angle between 00 and 900, and for
any azimuth. In this paper, we test the accuracy of the derived R/T coefficients of un-
converted plane P waves. We show that, except for critical regions, first-order coefficients
approximate the exact coefficients with acceptable accuracy.
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1 Introduction

In our previous papers, we studied the first-order ray tracing and dynamic ray tracing
(FORT and FODRT) of seismic body P and coupled S waves propagating in smoothly

varying, weakly anisotropic media without interfaces (Pšenč́ık & Farra, 2005, 2007; Farra
& Pšenč́ık, 2008, 2010). To derive the FORT and FODRT equations, we used the per-
turbation theory, in which deviations of anisotropy from isotropy were considered to be
of the first-order. In this paper, we concentrate on computing approximate, first-order
reflection/transmission (R/T) coefficients in such media. As in the exact problem of re-
flection/transmission, the incident and generated waves satisfy boundary conditions cor-
responding to the given configuration. In case of two elastic, weakly anisotropic solids in
welded contact, they are continuity of displacement and traction. The quantities appear-
ing in the boundary conditions are first-order phase velocities, slowness and polarization
vectors, with which we work in the FORT and FODRT.
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The study of the R/T problem in anisotropic media has a rather long history. The
problem of reflection/transmission of plane waves at a plane interface between two ho-
mogeneous anisotropic halfspaces was studied, for example, by Fedorov (1968), Musgrave
(1970), Daley & Hron (1977), Graebner (1992), Chapman (1994, 2004). For more refer-
ences see Červený (2001). Gajewski & Pšenč́ık (1987) used the plane-wave R/T coeffi-
cients in the ray-theory computations of seismic wavefields in 3D laterally varying layered
anisotropic media. Considerable attention has been paid to various simplifications of
R/T coefficients based, for example, on the assumption of a weak-contrast interface, with
anisotropy of the surrounding media of arbitrary strength (e.g., Ursin & Haugen, 1996;
Klimeš, 2003) or on the assumption of a weak-contrast interface and weak anisotropy of
the surrounding media (e.g., Rueger, 1997, 2002; Vavryčuk & Pšenč́ık, 1998; Zillmer et
al., 1998; Vavryčuk, 1999, J́ılek, 2002).

In this paper, we make no weak-contrast interface assumption. We only assume that
the media on both sides of the interface are weakly, but generally anisotropic. The assump-
tion of weak anisotropy implies that the S waves involved in the reflection/transmission
are coupled. For this reason, the formulation of the reflection/transmission problem re-
sembles closely the formulation for isotropic media. In this paper, we concentrate on
incident P waves only. An incident P wave can generate two possible types of waves,
P or coupled S waves. The slowness vectors of generated waves are sought by solving
numerically the corresponding first-order eikonal equation, separately for each generated
wave. The corresponding R/T coefficient is determined by numerically solving a system
of six inhomogeneous, linear, algebraic equations. For media with anisotropy of higher
symmetry, with specific orientation of symmetry elements with respect to the interface, it
might be possible to find explicit expressions for the R/T coefficients (see, e.g., Daley &
Hron, 1977; Graebner, 1992). Here, however, we consider the case of general anisotropy.

In Sec.2, we present first-order formulae for the displacement vector u and traction T
of a P or a coupled S wave. Besides first-order slowness vectors, special attention is paid
to the first-order formulae specifying the polarization vector (P waves) or the polarization
plane (coupled S waves). These formulae are then used in the boundary conditions in
Sec.3. In Sec.3.1, the formulae for and procedure of determining the first-order slowness
vectors of generated waves are described. In Sec.3.2, the set of six inhomogeneous linear
algebraic equations, from which the first-order R/T coefficients can be determined, see
Sec.4, is specified. In Sec.5, the accuracy of the derived formulae for the case of uncon-
verted P waves is studied. Together with the reflection and transmission coefficients, RPP

and TPP , the accuracy of the generated first-order slowness and polarization vectors is
tested on two models of an isotropic halfspace over an HTI halfspace. The main results
are summarized in Sec.6.

The lower-case indices i, j, k, l, ... take the values of 1,2,3, the upper-case indices
I, J, K, L, ... take the values of 1,2. The Einstein summation convention over repeated
indices is used. The upper index [M] is used to denote quantities related to the coupled
S wave. In order to distinguish quantities related to reflected and transmitted waves, we
use superscripts R and T, respectively. Quantities related to the incident wave have no
superscript. Sometimes, when we discuss properties of all generated waves, we use the
superscript G.
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2 First-order expressions for displacement and trac-

tion

The boundary conditions, which must be satisfied at an interface, involve displacement
vectors u and tractions T of the incident and generated waves. We, therefore, specify the
first-order approximations of these quantities first.

2.1 Displacement vector

The first-order approximation of the displacement vector u of an incident or generated
harmonic plane wave can be expressed as:

u(x, t) = Uexp[−iω(t − p · x)] . (1)

Here i is the imaginary unit, ω is the circular frequency, p is the first-order slowness vector
and U is the first-order vectorial amplitude factor.

The first-order slowness vector can be expressed as p = n/c(n). Here n is a unit
vector perpendicular to the wavefront of the relevant wave and c = c(n) is its first-order
phase velocity. It can be determined from the corresponding first-order eigenvalue of the
Christoffel matrix, see below.

The first-order vectorial amplitude factor U of a plane P wave propagating in a ho-
mogeneous, weakly anisotropic medium can be expressed in the following way:

U = Cf [3] . (2)

The term C is the first-order scalar P-wave amplitude factor. The first-order P-wave
polarization vector f [3] is a function of the first-order P-wave slowness vector p[3] = n/c[3].
Here, c[3] = c[3](n) is the first-order P-wave phase velocity. Polarization vector f [3] is given
by the expression (Pšenč́ık & Farra, 2007):

f [3](p[3]) =
(c[3])2(n)

V 2
P − V 2

S

[B13(p
[3])e[1](p[3]) + B23(p

[3])e[2](p[3])] + e[3](p[3]) . (3)

The first-order vectorial amplitude factor U of a coupled S wave propagating in a
homogeneous weakly anisotropic medium can be expressed in the following way (Farra &
Pšenč́ık, 2010):

U = Af [1] + Bf [2] . (4)

Terms A and B are first-order scalar S-wave amplitude factors. Vectors f [K] = f [K](p[M])
are two mutually perpendicular vectors, to which amplitude factors A and B are related.
Vectors f [K] are situated in the plane, which we call the first-order S-wave polarization
plane. It is perpendicular to vector f [3] = f [3](p[M]), where p[M] is the first-order slowness
vector corresponding to the coupled S wave, p[M] = n/c[M]. Symbol c[M] = c[M](n)
denotes the first-order common S-wave phase velocity. Vectors f [K] are given by the
following expressions:

f [K](p[M]) = e[K](p[M]) −
(c[M])2(n)

V 2
P − V 2

S

BK3(p
[M])e[3](p[M]) . (5)
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Note that vectors f [i] are generally non-unit and are different for p[3] and p[M].

Symbols B13 and B23 in eqs (3) and (5) are elements of symmetric matrix B(p)
(p = p[3] for P waves and p = p[M] for coupled S waves) with elements:

Bjl(p) = Γik(p)e
[j]
i e

[l]
k . (6)

Terms Γik(p) are elements of the generalized Christoffel matrix Γ(p):

Γik(p) = aijklpjpl , (7)

where aijkl are density-normalized elastic moduli. Symbols e
[j]
i in eqs (3), (5) and (6)

denote the components of three mutually perpendicular unit vectors e[j]. Vector e[3] has
been chosen so that e[3] = n. Here n is a unit vector perpendicular to the wavefront,
specifying the direction of the first-order slowness vector p (with components pi) of the
corresponding wave. The remaining two mutually perpendicular unit vectors e[1] and e[2]

can be chosen arbitrarily in the plane perpendicular to vector e[3] = n.

Slowness vector p must satisfy the corresponding first-order eikonal equation

G(p) = 1 . (8)

Symbol G represents either the first-order approximation of the eigenvalue G[3] of the
Christoffel matrix (7), corresponding to the P wave, or an average of the first-order
eigenvalues G[1] and G[2] of the Christoffel matrix (7), corresponding to S waves. The
explicit form of the first-order eikonal equations for P and coupled S waves can be found
in Pšenč́ık & Farra (2005) and Farra & Pšenč́ık (2008). The first-order eigenvalues G are
closely related to the phase velocities of the corresponding waves

(c[M])2(n) =
1

2
[G[1](n) + G[2](n)] , (c[3])2(n) = G[3](n) . (9)

Symbols VP and VS in eqs(3) and (5) denote the P- and S-wave velocities corresponding
to the reference isotropic medium closely approximating the studied weakly anisotropic
medium at the point of incidence. Farra & Pšenč́ık (2010) showed that, for coupled S
waves, the reference velocities must be chosen in the following way:

V 2
S = (c[M])2 , V 2

P = (c[M])2B33(p
[M]) . (10)

Similarly, we can choose for P waves:

V 2
P = (c[3])2 , V 2

S =
1

2
(c[3])2[B11(p

[3]) + B22(p
[3])] . (11)

We can then modify eq.(3) to read:

f [3](p[3]) =
B13(p

[3])e[1](p[3]) + B23(p
[3])e[2](p[3])

1 − 1
2
[B11(p[3]) + B22(p[3])]

+ e[3](p[3]) (12)

and eq.(5) to read:

f [K](p[M]) = e[K](p[M]) +
BK3(p

[M])

1 − B33(p[M])
e[3](p[M]) . (13)
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2.2 Traction

The components of traction T acting at an interface with unit normal N are given by the
expression:

Ti(x, t) = τij(x, t)Nj = ρ(x)aijkl(x)Njuk,l(x, t) . (14)

See, for example, Gajewski and Pšenč́ık (1987), Červený (2001). Inserting the expression
(1) for the displacement vector into eq.(14) leads to

Ti = iωρaijklNjUkpl exp[−iω(t − p · x)] . (15)

The symbols Uk and pk in eq.(15) represent the components of the first-order vectorial
amplitude factors (2) or (4) and of the first-order slowness vectors, respectively.

3 Boundary conditions

Let us consider two homogeneous weakly anisotropic halfspaces in welded contact, sepa-
rated by plane interface Σ with unit normal N pointing into the medium, in which the
incident plane wave propagates. The medium, in which the incident wave propagates, is

specified by density ρ(1) and the density-normalized elastic moduli a
(1)
ijkl. The medium on

the other side of the interface is specified by ρ(2) and a
(2)
ijkl. An incident wave generates P

and coupled S waves in weakly anisotropic halfspaces on both sides of the interface. The
incident and generated waves satisfy the boundary conditions, which in case of an inter-
face separating two solid media, consist in the requirements of continuity of displacement
u and traction T across the interface.

The boundary conditions lead to two sets of equations. The first set, resulting from
the continuity of the traveltime of all involved waves across the interface, represents equa-
tions for determining the slowness vectors of generated waves. The second set, resulting
from the boundary conditions themselves, represents equations for determining the scalar
amplitude factors of generated waves. In the following, we deal successively with both
sets of equations.

3.1 Transformation of slowness vectors across an interface

The continuity of traveltime along the interface Σ implies the continuity of the traveltime
derivatives taken along the interface. This can be expressed in the following way:

pG − (pG · N)N = p− (p · N)N . (16)

Here, p and pG are first-order slowness vectors of the incident and generated (G) waves,
N is the unit normal to interface Σ. Eq.(16) represents the Snell law for anisotropic
media. From equation (16) we can determine the components of the slowness vectors of
the generated waves, tangential to the interface. It remains to determine their components
along the normal N to the interface. We can express the slowness vectors of generated
waves as

pG = b + ξGN = p − (p · N)N + ξGN . (17)
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In eq.(17), ξG represents the scalar component of pG to N, and b represents the vectorial
component of pG, tangential to Σ. Components ξG are the sought parameters. They
can be found from the first-order eikonal equations satisfied by the waves generated on
corresponding sides of the interface

G(b + ξGN) = 1 . (18)

Eikonal equation (18) can be rewritten into the form of a polynomial equation of the
fourth degree in ξG. It has four roots, two of which are non-physical. They can be
identified as two conjugate roots, whose imaginary parts are larger than the imaginary
parts of the remaining two roots. Of the remaining two roots, we accept the one, whose
first-order ray-velocity vector vG (vG

i = 1
2
∂G/∂pi, where G = G[3] for P waves, or G =

1
2
(G[1] + G[2]) for coupled S waves) points into the medium, in which the generated wave

should propagate (in case of real roots) or which satisfies the radiation condition (in case of
complex conjugate roots). Explicitly this means that Niv

G
i ≥ 0 for reflected and Niv

G
i ≤ 0

for transmitted waves in case of real roots, and ImξG ≥ 0 for reflected and ImξG ≤ 0 for
transmitted waves in case of complex conjugate roots. The waves corresponding to the
real roots of the polynomial equation are regular waves while those related to the complex
roots are evanescent waves.

The selection of roots described above can be used in employing a polynomial equation
solver, which provides all four roots. We can, however, also use alternative procedures.
In weakly anisotropic media, it is reasonable to assume that the sought root of eq.(18) is
close to the root ξG(0) of a similar equation corresponding to a reference isotropic medium.
We can thus use the root from the reference isotropic case as an initial guess of the
sought root. Jech & Pšenč́ık (1989, Sec.4.3) proposed a one-step procedure based on the
first-order correction of such an initial guess ξG(0). Recently, Vanelle & Gajewski (2009)
made the procedure iterative, updating successively the reference isotropic medium. The
procedure proposed and used by Dehghan, Farra & Nicolétis (2007) seems to be more
efficient. They also use ξG(0), determined for a reference isotropic medium, as the initial
value in the iterative search for the solution of eq.(18). Rather than updating the reference
medium, they use the Newton-Raphson iterative method to update the root itself. The
iterative formula, derived from the expansion of the eigenvalue G in eq.(18) with respect
to ξG, reads:

pG{j} = b + ξG{j}N , (19)

where j is the iteration number and

ξG{j} = ξG{j−1} −
G(pG{j−1}) − 1

Nk∂G/∂pk(pG{j−1})
. (20)

The explicit expressions for G and ∂G/∂pk for P waves in media of arbitrary anisotropy
and for coupled S waves in media of orthorhombic and TI symmetries can be found in
Pšenč́ık & Farra (2007) and Farra & Pšenč́ık (2008), respectively. The expression for
∂G/∂pk for coupled S waves in media of arbitrary anisotropy can be simply determined
by differentiating eq.(19) of Farra & Pšenč́ık (2008) with respect to pk.

The use of eqs(19) and (20) avoids the necessity of seeking the best-fitting reference
medium (Vanelle & Gajewski, 2009). The procedure described above can be used even for
stronger anisotropy and arbitrary incidence angles, including large ones. It can also be
used to seek the roots of eq.(18) for evanescent waves, i.e. to seek complex-valued roots.
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3.2 Transformation of amplitudes across an interface

The continuity of traveltime along interface Σ leads to the equality of the exponential
factors of displacement vectors of incident and generated waves. Taking this into account,
we can express the boundary conditions as follows

ARf
[1]R
i + BRf

[2]R
i + CRf

[3]R
i −ATf

[1]T
i − BT f

[2]T
i − CT f

[3]T
i = −Ui ,

ARX
[1]R
i + BRX

[2]R
i + CRX

[3]R
i −AT X

[1]T
i − BT X

[2]T
i − CT X

[3]T
i = −Xi , (21)

where

Xi = ρ(1)a
(1)
ijklNjUkpl ,

X
[3]R
i = ρ(1)a

(1)
ijklNjf

[3]R
k p

[3]R
l , X

[3]T
i = ρ(2)a

(2)
ijklNjf

[3]T
k p

[3]T
l ,

X
[N ]R
i = ρ(1)a

(1)
ijklNjf

[N ]R
k p

[M]R
l , X

[N ]T
i = ρ(2)a

(2)
ijklNjf

[N ]T
k p

[M]T
l . (22)

The symbols Xi in eqs (21) and (22) correspond to the incident wave, symbols X
[3]G
i to

generated P waves and X
[N ]G
i , N = 1, 2, to generated coupled S waves. The slowness

vectors of generated waves are determined by the procedure described in the preceding
section. Vectors f [i]G can be determined from eqs (3) or (5) or, alternatively, from eqs
(12) or (13).

4 R/T coefficients for the incident P wave

For the incident P wave, the quantities Ui and Xi on the right-hand side of eq.(21) follow
from (2) and from the first equation in (22), in which Uk again follows from (2) and pl

are the components of the P-wave first-order slowness vector p[3].

Eqs (21) represent a set of six inhomogeneous linear algebraic equations for six un-
knowns AR, BR, CR, AT , BT and CT , the first-order scalar amplitude factors of four waves
generated by incidence of the wave with the first-order vectorial amplitude factor U. If
we wish to compute the standard displacement R/T coefficients, we have to modify eqs
(21) and (22). It is necessary to normalize the vectors f [i] and f [i]G in (21) and (22) to unit
vectors, and to replace them by their normalized counterparts f̄ [i] and f̄ [i]G. Normalized
vectors f̄ [I]G can be chosen arbitrarily in the plane perpendicular to vector f [3]G. It is now
possible to introduce first-order R/T coefficients as RPP = ν[3]RCR/C, TPP = ν[3]TCT /C,
RPS[1] = ν[1]RAR/C, RPS[2] = ν[2]RBR/C, TPS[1] = ν[1]TAT /C and TPS[2] = ν[2]TBT /C,

where ν[i]R = |f [i]R|/|f [i]| and ν[i]T = |f [i]T |/|f [i]|. Indices S[1] and S[2] indicate that the
corresponding coefficients are related to vectors f̄ [1]G or f̄ [2]G, respectively. Eqs(21) and
(22) can now be expressed in the following form:

RPS[1]f̄
[1]R
i + RPS[2]f̄

[2]R
i + RPP f̄

[3]R
i − TPS[1]f̄

[1]T
i − TPS[2]f̄

[2]T
i − TPP f̄

[3]T
i = −f̄

[3]
i ,

RPS[1]X̄
[1]R
i + RPS[2]X̄

[2]R
i + RPP X̄

[3]R
i − TPS[1]X̄

[1]T
i − TPS[2]X̄

[2]T
i − TPP X̄

[3]T
i

= −ρ(1)a
(1)
ijklNj f̄

[3]
k pl , (23)
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where

X̄
[3]R
i = ρ(1)a

(1)
ijklNj f̄

[3]R
k p

[3]R
l , X̄

[3]T
i = ρ(2)a

(2)
ijklNj f̄

[3]T
k p

[3]T
l ,

X̄
[N ]R
i = ρ(1)a

(1)
ijklNj f̄

[N ]R
k p

[M]R
l , X̄

[N ]T
i = ρ(2)a

(2)
ijklNj f̄

[N ]T
k p

[M]T
l . (24)

5 Examples

In this section, the system of eqs (23) with (24) is used to calculate the first-order RPP

and TPP coefficients. Since we are interested in unconverted P waves, the choice of vectors
f̄ [I] in the plane perpendicular to f [3] can be arbitrary. We determine them from eq.(13),
in which vector e[2] is chosen horizontal and all three vectors e[i] form an orthonormal
right-handed vectorial basis.

For tests of accuracy of the first-order coefficients and related quantities, we use the
two models used by Pšenč́ık & Vavryčuk (1998). In both models, we consider an isotropic
halfspace, in which an incident wave propagates, over the HTI halfspace. The lower HTI
halfspace is the same in both models. The models differ only in the upper isotropic
halfspace. In the first model, Model A, the P- and S-wave velocities and density of the
upper halfspace are α = 4.0 km/s, β = 2.31 km/s and ρ = 2.65 g/cm3, respectively. In
the second model, Model B, these parameters are α = 3.0 km/s, β = 1.73 km/s and
ρ = 2.2 g/cm3. The matrix of density-normalized elastic moduli (in km2/s2) specifying
the HTI medium of the lower halfspace reads:





















9.43 3.14 3.14 0.00 0.00 0.00
15.27 4.60 0.00 0.00 0.00

15.27 0.00 0.00 0.00
5.33 0.00 0.00

4.25 0.00
4.25





















. (25)

The density of the HTI medium is ρ = 2.6 g/cm3. We can see that the axis of symmetry is
oriented along the x-axis of the Cartesian coordinate system. The vertical sections of the
phase-velocity surfaces containing the horizontal axis of symmetry are shown in Figure 1.
The P-wave velocity section is shown in the bottom plot, the S-wave velocity sections are
shown in the top plot.

We can see that in Model A, the P- and S-wave velocities in the upper (isotropic)
halfspace exceed the P- and S-wave velocities in the lower halfspace. Except for vertical
plane perpendicular to the axis of symmetry, the velocity contrast (ratio of the absolute
value of the difference of velocities on both sides of the interface and of their average)
varies with the incidence angle. For P waves in the vertical plane containing the axis
of symmetry, the velocity contrast increases from about 2% for vertical incidence (00) to
about 26% for nearly tangential incidence (900). For the S1 wave (faster, with SH-wave
polarization) in the same vertical plane, the contrast increases from about 0.05% to about
11%. For the S2 wave (slower), the contrast slightly varies around 11%. In Model B, the
P- and S-wave velocities in the upper halfspace are lower than in the lower halfspace. The
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contrast is generally higher than in Model A. Its variation in the vertical plane containing
axis of symmetry is opposite to that for Model A. For the P wave, the contrast decreases
from about 26% for normal incidence to about 2% for nearly tangential incidence. For the
S1 wave, the contrast decreases from about 29% to 17%. For the S2 wave, the contrast
varies slightly around 17%. As to the anisotropy of the HTI halfspace, it is about 24%
for the P wave and around 11% for the S1 wave.

Coefficients RPP and TPP obtained by solving the system of equations (23) may be
complex valued. Therefore, we present them in terms of their moduli and phases:

RPP = |R| exp(iϕR) , TPP = |T | exp(iϕT ) . (26)

The presented figures have the forms of maps, in which the quantities are shown as
functions of the angle of incidence θ (horizontal axis) and of azimuth Φ (vertical axis).
Both angles are specified in degrees. Azimuth Φ = 00 corresponds to the direction along
the axis of symmetry, Φ = 900 to the direction perpendicular to the axis of symmetry.
The incidence angle θ = 00 corresponds to normal incidence.

For a better understanding of the behaviour of the approximate coefficients, we first
show the maps of deviations of the first-order quantities as slowness or polarization vectors,
or polarization planes of waves generated in the lower anisotropic halfspace from their
exact counterparts. These deviations are expressed as angles (in degrees) made by the
approximate and exact vectors. We then show maps of the exact moduli and phases of
the RPP and TPP coefficients followed by maps of differences of the moduli and phases of
the first-order R/T coefficients from the exact ones.

Figure 2 shows the maps of angular deviations of the approximate and exact slowness
vectors of the transmitted P (top), S1 (middle) and S2 (bottom) waves for Model A. The
S-wave plots show the deviations of the first-order slowness vectors of coupled S wave
from the exact slowness vectors of S1 and S2 waves. Similar maps for the reflected P and
S waves are not shown because the reflected waves propagate in the isotropic halfspace,
in which the approximate slowness vectors coincide with the exact vectors (thus their
differences are zero for each incidence angle and azimuth).

We can see that the approximate slowness vectors of the P wave do not deviate from
the exact vectors by more than 10. The deviations increase with increasing angle of
incidence, the maximum deviations occurring for azimuths around 500. Deviations are
zero and close to zero for azimuth 900 and azimuths close to it. The vertical plane
with azimuth 900 is perpendicular to the axis of symmetry and thus coincides with the
”isotropy plane”, in which directions of approximate slowness vectors coincide with exact
slowness vectors. The situation is different in case of S waves (middle and bottom plots).
The deviations also increase with increasing angle of incidence, being largest for azimuths
around 900. They are slightly larger than in the case of the P wave; they slightly exceed
20. For azimuths close to 900, we observe non-zero deviations. This is the consequence of
studying the deviations of the first-order slowness vectors, corresponding to the coupled S
wave, from the exact slowness vectors of separate S1 and S2 waves, as mentioned above.

We have also studied differences in the size of the approximate and exact slowness
vectors. We found that the differences do not exceed 1% for P waves and 6% for S waves.

Figure 3 shows the maps of angular deviations of the approximate and exact polariza-
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tion of transmitted P (top) and S (bottom) waves for Model A. In the case of P waves,
we show the deviations of the first-order polarization vectors (3) from the exact ones.
In the case of S waves, we show the deviations of the normal to the first-order S-wave
polarization plane, formed by vectors f [K] in eq.(5), from the normal to the exact S-wave
polarization plane, defined by the exact S-wave polarization vectors. For the same reasons
as in the case of the deviations of slowness vectors, the maps for reflected P and S waves
are not shown. The behaviour of the polarization deviations is similar to the behaviour of
the slowness vector deviations. In the case of P waves, the deviations of the polarization
vectors are slightly larger, slightly exceeding 1.20. The deviations for azimuths close to
900 are zero. The deviations of the polarization vectors of S waves resemble deviations of
slowness vectors of S waves very closely.

In Figure 4, we can see maps of the modulus of the exact RPP coefficient (top) and
of the differences of moduli of the first-order and the exact RPP coefficients (bottom) for
Model A. Because of higher velocities in the upper halfspace, there are no critical reflec-
tions. For all the azimuths and incidence angles, the phases are π (therefore, we do not
show the map of phases), which indicates that the coefficients are negative. The first-order
coefficients also have phase π, therefore, the differences in phase are zero everywhere and
are not shown. Since the contrast is very weak for small angles of incidence, the modulus
of the exact RPP coefficient is rather small for small angles. As expected, modulus |RPP |
increases, except for incidence angles close to 200 and azimuths between 0 and 400, with
increasing incidence angle. The slight decrease of coefficients in the above-mentioned re-
gion is an effect observable only in anisotropic media. From the bottom plot, we can see
that, for small incidence angles, the approximate RPP coefficient is less than the exact
one. Only for large azimuths and large incidence angles, are the approximate coefficients
slightly larger than the exact ones. For azimuths close to 900 (isotropy plane) or small
angles of incidence, the approximate RPP coefficient is very accurate. The errors are
smaller at least by one order, but for most angles of incidence significantly less than the
values of the RPP coefficient. The relative errors of the first-order coefficient in regions,
in which the exact coefficient is about 0.1, or larger, do not exceed 3%. In regions, where
the exact coefficient is very small, the relative errors are, of course, larger. They may
reach 25%.

Figure 5 shows the same as Fig.4, but for the transmission coefficient TPP for Model
A. The modulus of the TPP coefficient decreases with increasing incidence angle. Due to
the weak-contrast interface for small angles of incidence, the values of the TPP coefficient
are quite large for these angles. The phase is zero for any angle of incidence and azimuth.
From the bottom plot, we can see that the approximate TPP coefficient is less than the
exact one for all azimuths and angles of incidence. The differences are smaller by at least
two orders than the values of the coefficient. The maximum difference is about 0.015. The
relative errors are less than 1% for most angles, slightly exceeding 3% for large incidence
angles.

In the following figures, we show plots corresponding to Model B. As mentioned above,
in this case the velocities in the isotropic halfspace are smaller than in the lower anisotropic
halfspace. We can, therefore, observe critical and overcritical incidence of P wave. The
effects of critical and overcritical incidence can already be observed in maps of the angular
deviations of approximate and exact slowness vectors.
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Angular deviations of the first-order and exact slowness vectors of transmitted P (top),
S1 (middle) and S2 (bottom) waves are shown in Figure 6. If we compare the top plots of
Figs 2 and 6, we can see a similar increase in deviations for increasing angles of incidence
up to certain ”boundary” values (angles of incidence of about 750 for azimuths close to
00, which continuously change to angles of incidence of about 500 for azimuths close to
900). The deviations in the upper plot of Fig.6 grow quickly round these ”boundary”
values of the angles of incidence. These angles of incidence indicate critical incidence.
Since the angular positions of exact and approximate critical angles slightly differ, we
can observe a narrow belt (instead of a sharp curve), in which the angular deviations
increase over the value of about 1.50, the maximum value in the subcritical region. In the
overcritical region, the angular differences are zero. This is because we are comparing the
real parts of the complex-valued first-order and exact slowness vectors in this region. The
real parts are in both cases tangent to the interface and thus their angular difference is
zero. As in Fig.2, the differences for the azimuths close to 900 are negligible. The slowness
vectors of transmitted S waves are not affected by overcritical incidence and, therefore,
the behaviour of their deviations is very similar to the behaviour of their counterparts
in Model A, shown in the middle and bottom plots of Fig.2. The deviations in Model
B attain greater values (up to around 30) as a consequence of the lower velocities in the
upper halfspace than in the lower.

Similarly as in Model A, the differences in the size of the approximate and exact
slowness vectors do not exceed 1% for P waves and 6% for S waves.

In the upper plot of Fig.7, which shows the angular deviations of the first-order and
exact P-wave polarization vectors in the lower halfspace of Model B, we can again observe
a narrow belt of strongly increased values of deviations, which indicates the region of
critical incidence. In the subcritical region, the differences behave in a similar way as
in the upper plot of Fig.3, with slightly higher angular deviations of the first-order and
exact polarization vectors, which are again the consequence of lower velocities in the
upper halfspace. This is also true for any angle of incidence and azimuth for the S-wave
polarization differences shown in the bottom plot of Fig.7; compare this plot and the
bottom plot of Fig.3.

Fig.8 shows maps of the modulus of the exact RPP coefficient (top) and of the dif-
ferences of moduli of approximate and exact RPP coefficients (bottom) for Model B. We
can see that the behaviour of the modulus of the exact coefficient is dramatically different
from the behaviour of |RPP | in Model A (see upper plot of Fig.4). We can clearly see
the region of increased density of isolines, which indicates critical incidence. As we have
already seen in the upper plots of Figs 6 and 7, it varies from angles of incidence of about
750 for azimuths around 00 to angles of incidence of about 500 for azimuths close to 900.
The variation of the RPP coefficient in the overcritical region is negligible in comparison
with the variation in the subcritical region. An interesting phenomenon can be observed
for small azimuths and angles of incidence around 700. Along one of the isolines in this
region (not shown in the plot), the modulus of the RPP coefficient becomes zero. The
angles of incidence along this isoline, which can be seen much better in the bottom plot
of Fig.8 (angles of incidence between 530 and 710 and azimuths between 00 and 160),
represent Brewster angles, for which the reflection coefficient is zero. Except for a slight
shift of isolines, the map of the first-order RPP coefficient (not shown) is identical with
the upper plot of Fig.8. Therefore, the differences shown in the bottom plot of Fig.8
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are generally very small. They only increase significantly in the vicinity of critical inci-
dence and also close to the above-mentioned Brewster angles. The increased density of
isolines is the consequence of the slight misposition of the critical and Brewster angles
of the approximate and exact coefficients and of their rapid variations in the mentioned
regions. Except for these narrow regions, there are no dramatic differences between the
approximate and exact coefficients.

For subcritical incidence, the phases, with the exception of the vicinity of the Brewster
angles (the isoline between azimuths 530 and 710 and between the angles of incidence 00

and 160), are zero. For overcritical incidence, the phases become non-zero and vary as
shown (in degrees) in the upper plot of Fig.9. At Brewster angles, the phases switch
from zero (outside the above-mentioned isoline) to π (inside). The differences in phases
(in degrees again) shown in the bottom plot indicate that, except for the close vicinity
of critical incidence and the Brewster angles (again caused by misposition of the isolines
for approximate and exact phases), the approximate phases differ only a little from the
exact.

Figure 10 shows transmission coefficient TPP for Model B. The modulus of the TPP

coefficient (top) increases smoothly with the incidence angle up to critical incidence. It
then decreases rapidly to zero for tangential incidence. There are no Brewster angles for
the TPP coefficient. Although the region of critical incidence in the plot of the modulus
of the TPP coefficient is difficult to identify (it is between the isolines of 1.5), it is clearly
visible in the plot of differences of approximate and exact coefficients (bottom). Except for
the region of critical incidence, the differences between the first-order and exact coefficients
are again very small.

As in the case of the reflection coefficient, the phases of the transmission coefficients
are zero for subcritical incidence. They become non-zero for overcritical incidence, see the
upper plot in Figure 11, where they are again shown in degrees. Except for the region of
critical incidence, the differences between approximate and exact phases are, as in Fig.9,
very small.

6 Concluding remarks

A characteristic and important feature of the first-order coefficients presented in this
paper is their applicability to all incidence angles and azimuths. For example, the ap-
proximate coefficients of Vavryčuk & Pšenč́ık (1998), Zillmer et al.(1998), J́ılek (2002),
Rueger (2002), Klimeš (2003) are applicable only to smaller angles of incidence; they are
inapplicable for critical and overcritical reflections and/or transmissions. Another advan-
tage of the approximate coefficients presented in this paper is their applicability to models
with arbitrary contrast. The coefficients of the above-mentioned references are applicable
only to weak-contrast models. It is also important to emphasize that S waves in weakly
anisotropic media are considered as one coupled S wave in the described first-order R/T
coefficients. This was not the case in previous studies of R/T coefficients. The only
limitation of the presented coefficients is their applicability to weakly anisotropic media.
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The described tests of the first-order RPP and TPP coefficients and related quantities
such as slowness and polarization vectors indicate the high accuracy of the approximate
formulae. Exceptions are only in the close vicinities of critical incidence and of the Brew-
ster angles. In applications in the ray theory, the inaccuracies of R/T coefficients in the
vicinities of critical incidence are not a problem since the ray theory itself does not work
properly in these regions.
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Figure captions

Figure 1: The P-wave (bottom) and S-waves (top) vertical velocity sections containing
the axis of symmetry of the HTI medium specified in (25). The velocities vary from the
vertical (00) to horizontal (900) direction of the wave normal.

Figure 2: Maps of the angular deviations (in degrees) of approximate and exact slowness
vectors of transmitted P (top), S1 (middle) and S2 (bottom) waves for Model A.

Figure 3: Maps of the angular deviations (in degrees) of approximate and exact polar-
ization vectors of transmitted P (top) and of polarization planes of S (bottom) waves for
Model A.

Figure 4: Maps of the moduli of the exact RPP coefficient (top) and of the differences of
moduli of the first-order and exact RPP coefficients (bottom) for Model A.

Figure 5: Maps of the moduli of the exact TPP coefficient (top) and of the differences of
moduli of the first-order and exact TPP coefficients (bottom) for Model A.

Figure 6: Maps of the angular deviations (in degrees) of approximate and exact slowness
vectors of transmitted P (top), S1 (middle) and S2 (bottom) waves for Model B.

Figure 7: Maps of the angular deviations (in degrees) of approximate and exact polar-
ization vectors of transmitted P (top) and of polarization planes of S (bottom) waves for
Model B.

Figure 8: Maps of the moduli of the exact RPP coefficient (top) and of the differences of
moduli of the first-order and exact RPP coefficients (bottom) for Model B.

Figure 9: Maps of the phase (in degrees) of the exact RPP coefficient (top) and of the
differences of phases of the first-order and exact RPP coefficients (bottom) for Model B.

Figure 10: Maps of the moduli of the exact TPP coefficient (top) and of the differences of
moduli of the first-order and exact TPP coefficients (bottom) for Model B.

Figure 11: Maps of the phase (in degrees) of the exact TPP coefficient (top) and of the
differences of phases of the first-order and exact TPP coefficients (bottom) for Model B.
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Figure 1: The P-wave (bottom) and S-waves (top) vertical velocity sections containing
the axis of symmetry of the HTI medium specified in (25). The velocities vary from the
vertical (00) to horizontal (900) direction of the wave normal.
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Figure 2: Maps of the angular deviations (in degrees) of approximate and exact slow-
ness vectors of transmitted P (top), S1 (middle) and S2 (bottom) waves for Model A.
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Figure 3: Maps of the angular deviations (in degrees) of approximate and exact po-
larization vectors of transmitted P (top) and of polarization planes of S (bottom) waves
for Model A.
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Figure 4: Maps of the moduli of the exact RPP coefficient (top) and of the differences
of moduli of the first-order and exact RPP coefficients (bottom) for Model A.
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Figure 5: Maps of the moduli of the exact TPP coefficient (top) and of the differences
of moduli of the first-order and exact TPP coefficients (bottom) for Model A.
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Figure 6: Maps of the angular deviations (in degrees) of approximate and exact slow-
ness vectors of transmitted P (top), S1 (middle) and S2 (bottom) waves for Model B.
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Figure 7: Maps of the angular deviations (in degrees) of approximate and exact po-
larization vectors of transmitted P (top) and of polarization planes of S (bottom) waves
for Model B.

98



0.02

0.04
0.06

0.
1

0.1

0.2
0.2

0.2

0.2

0.9

0.9

0.9

0.
9

0

10

20

30

40

50

60

70

80

90
0 10 20 30 40 50 60 70 80 90

θ (deg)

φ 
(d

eg
)

-0.1

-0.1

-0.1

-0.02
-0.02

-0.02

-0.02

-0.02
-0.01

-0.01

-0.01

-0.01

-0.004

-0
.0

04

-0.004

-0.004
0

0

0
0

0

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.002

0.002

0.
00

2

0.
00

2

0.002

0.
00

4
0.

00
4

0.004

0.004

0.
00

4

0.
00

6
0.

00
6

0.006

0.006

0.006

0.01

0.01
0.01

0.
01

0.02

0.02
0.02

0.03

0.03

0

10

20

30

40

50

60

70

80

90
0 10 20 30 40 50 60 70 80 90

θ (deg)

φ 
(d

eg
)

Figure 8: Maps of the moduli of the exact RPP coefficient (top) and of the differences
of moduli of the first-order and exact RPP coefficients (bottom) for Model B.
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Figure 9: Maps of the phase (in degrees) of the exact RPP coefficient (top) and of the
differences of phases of the first-order and exact RPP coefficients (bottom) for Model B.
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Figure 10: Maps of the moduli of the exact TPP coefficient (top) and of the differences
of moduli of the first-order and exact TPP coefficients (bottom) for Model B.
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Figure 11: Maps of the phase (in degrees) of the exact TPP coefficient (top) and of the
differences of phases of the first-order and exact TPP coefficients (bottom) for Model B.
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