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Summary

In the computation of paraxial travel times and Gaussian beams, the basic role is
played by second derivatives of the travel-time field at the reference ray Ω. These deriva-
tives can be determined by dynamic ray tracing (DRT) along the ray. Two basic DRT
systems have been broadly used in applications: the DRT system in Cartesian coordi-
nates and the DRT in ray-centred coordinates. In this paper, the transformation relations
between the second derivatives of the travel time field in Cartesian and ray-centred coor-
dinates are derived. These transformation relations can be used in many applications in
isotropic and anisotropic media, including computations of complex-valued travel times
necessary for the evaluation of Gaussian beams.

Keywords: Paraxial travel times, paraxial approximation of the displacement vector,
Gaussian beams, dynamic ray tracing, second-order travel time derivatives.

1 Introduction

In three-dimensional, laterally varying, isotropic or anisotropic media, the ray-theory
travel times are computed along rays. If we wish to compute the travel-time field in a
vicinity of a reference ray Ω, we have to determine new rays in this vicinity. We can,
however, evaluate the travel-time field around Ω approximately. It is sufficient to perform
dynamic ray tracing along the reference ray Ω and compute the second derivatives of the
travel time. As the first derivatives are known from ray tracing, we can use quadratic
expansion of the travel time field T = T (xm) and determine approximately the travel-time
field in the ”quadratic” (paraxial) vicinity of the reference ray. The paraxial travel time,
although approximate, finds very useful applications in the ray method. The complex-
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valued paraxial travel times may be also computed and may be applied in the theory of
paraxial Gaussian beams connected with the reference ray.

The DRT used to determine the second order travel-time derivatives can be expressed
in various coordinate systems. Most common is to use the DRT in global Cartesian
coordinates xi, i = 1, 2, 3, and to determine ∂2T/∂xi ∂xj, or to use the DRT in ray-centred
coordinates qN , N = 1, 2 and to determine ∂2T/∂qN ∂qM . In ray-centred coordinates,
the paraxial travel times are obtained only in the planes tangent to the wavefronts at the
reference ray. In Cartesian coordinates, however, they are determined in the whole 3-D
vicinity of any point on the reference ray. Consequently, the second derivatives of the
travel time field ∂2T/∂xi ∂xj have much broader applications.

It is, however, not necessary to perform DRT computations in the coordinate system,
in which we wish to compute the second travel-time derivatives. The transformation
relations derived in this paper allow computation of the second derivatives ∂2T/∂xi ∂xj

from ∂2T/∂qN ∂qM and vice versa. Consequently, we can simply determine the second
derivatives ∂2T/∂xi ∂xj even when the DRT system is solved in ray-centred coordinates,
and vice versa. These transformations simplify considerably various applications in the
paraxial ray theory and in the theory of Gaussian beams, see Červený and Pšenč́ık (2009).

Briefly to the content of the paper. In Sec.2, we introduce basic properties of DRT
in ray-centred coordinates. In Sec.3, we derive the relations between ∂2T/∂xi ∂xj and
∂2T/∂qN ∂qM .

We use here mostly the component notation for vectors and matrices, with the upper-
case indices (I, J, K,...) taking the values of 1 or 2, and the lower-case indices (i,j,k, ...)
taking the values 1, 2, or 3. Einstein summation convention is used.

2 Dynamic ray tracing in ray-centred coordinates

in heterogeneous anisotropic media

We consider the eikonal equation for the travel time field T (xi) in the Hamiltonian form

H(xi, pj) = 0 . (1)

Here H is the Hamiltonian, xi are the Cartesian components of the position vector x, and
pi = ∂T/∂xi are the Cartesian components of the slowness vector p, vector perpendicular
to the wavefront. We consider the Hamiltonians, which are homogeneous functions of
second degree in pi. The kinematic ray tracing equations then read

dxi

dτ
= Ui =

∂H
∂pi

,
dpi

dτ
= ηi = −∂H

∂xi

. (2)

Here τ is a monotonic variable along the ray, representing the travel time. The vector U ,
with Cartesian components Ui, is the ray-velocity vector, tangent to the ray, and vector η,
with Cartesian components ηi, represents the change of slowness vector p along the ray.
Suitable forms of Hamiltonians for heterogeneous anisotropic media are given in Červený
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(2001, Sec.3.6). The results presented in this paper are valid for any Hamiltonian, we
only require that the Hamiltonian is a homogeneous function of second degree in pi.

We now introduce the ray-centred coordinate system q1, q2, q3 connected with the
reference ray Ω. The basic property of the ray-centred coordinate system is that the ray
Ω represents the q3 coordinate axis of the system. The remaining coordinates q1 and q2

are introduced by the relation, see Klimeš (1994, 2006):

xi(qj) = xi0(q3) + HiM(q3)qM , (3)

where i = 1, 2, 3, and M = 1, 2. Basis vectors Hi1 and Hi2 may be introduced in many
ways. For an up-to-date review of various possibilities, see Klimeš (2006). The reference
ray is specified by q1 = q2 = 0, for which eq. (3) yields the relation xi(q3) = xi0(q3), with
q3 = τ . Coordinates q1, q2 are Cartesian coordinates which specify uniquely the position
of a point in the plane tangent to the wavefront, intersecting the reference ray Ω at the
point specified by q3 = τ .

Elements of the 3 × 3 transformation matrices from ray-centred to Cartesian coordi-
nates (H) and back (H̄) are defined as follows:

Him =
∂xi

∂qm

, H̄im =
∂qi

∂xm

. (4)

The elements satisfy the relation

H̄miHin = δmn . (5)

Six elements of the transformation matrices are known from kinematic ray tracing:

Hi3 =
∂xi

∂q3

= Ui , H̄3i =
∂q3

∂xi

= pi . (6)

From eqs (5) and (6), we obtain piUi = 1, piHiI = 0, UiH̄Ii = 0. Thus, the vectors HiI

are perpendicular to the slowness vector and the vectors H̄Ii are perpendicular to the
ray-velocity vector.

In this paper, we shall specify the contravariant basis vectors Hi1(τ) and Hi2(τ) along
the ray by a simple ordinary differential equation of the first order:

dHiI/dτ = −(HjIηj)pi/(pkpk) . (7)

In eq. (7), we used the relation dpi/dτ = ηi. Consequently, the vectors HiI(τ) can be
obtained by solving eq. (7) numerically along the ray Ω. In this paper, we assume that the
vectors HiI and Cpi, where C denotes the phase velocity, have been chosen at a point τ0 of
the ray Ω in such a way that they form a right-handed triplet of mutually perpendicular
unit vectors. It can be proved that the vectors are then unit, mutually perpendicular
and right handed along the whole ray. Thus, it is sufficient to compute only one of the
vectors HiI , say Hi1, by solving numerically eq. (7). The vector Hi2 can be calculated
from known Hi1 and Cpi at any point of the ray. Using relation Hi3 = Ui from eq. (6),
we have the complete 3 × 3 matrix H. The 3 × 3 matrix H̄ can be then determined by
inversion of H, see eq. (5).
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Let us emphasize that the choice of q3 = τ simplifies considerably the computations
as it leads to the following simple relations valid at any point of the ray Ω:

∂T

∂q3

= 1 ,
∂T

∂qI

= 0 ,
∂2T

∂q3∂qi

= 0 . (8)

These simple relations are not valid for any other monotonic parameter (e.g., the ar-
clength) along the ray. This is important to emphasize since the arclength along the ray
has been mostly used in ray-centred coordinates in heterogeneous isotropic media. In this
respect, our treatment differs from common treatment in isotropic media.

We now introduce six quantities Q(q)
n and P (q)

n (n = 1, 2, 3) on the ray by the relations

Q(q)
n = ∂qn/∂γ , P (q)

n = ∂p(q)
n /∂γ , (9)

where γ is a chosen ray parameter and p(q)
n = ∂T/∂qn. The expressions for Q(q)

n and P (q)
n

show how qn and p(q)
n change when the ray parameter γ changes. The quantities Q

(q)
3 and

P
(q)
3 are available from the ray tracing, but Q

(q)
N and P

(q)
N must be computed by solving a

system of ordinary differential equations of the first order along the ray Ω, called dynamic
ray tracing (DRT) system. The DRT system in ray-centred coordinates consists of four
equations:

dQ
(q)
N

dτ
= A

(q)
NMQ

(q)
M + B

(q)
NMP

(q)
M ,

dP
(q)
N

dτ
= −C

(q)
NMQ

(q)
M −DNMP

(q)
M , (10)

where

A
(q)
NM = H̄NiHjMAij − dNM , B

(q)
NM = H̄NiH̄MjBij ,

C
(q)
NM = HiNHjM(Cij − ηiηj) , D

(q)
NM = HiNH̄MjDij − dMN . (11)

The 3 × 3 matrices A, B, C and D with elements Aij, Bij, Cij and Dij represent the
second derivatives of the Hamiltionians:

Aij =
∂2H

∂pi∂xj

, Bij =
∂2H

∂pi∂pj

,

Cij =
∂2H

∂xi∂pj

, Dij =
∂2H

∂xi∂pj

. (12)

Note that Dij = Aji. The symbol dNM in (11) denotes

dNM = H̄NidHiM/dτ = −(H̄Nipi)(HjMηj)/(pkpk) . (13)

The same DRT system (10) can be used if we consider two ray parameters γ1, γ2

(orthonomic system of rays). In this case, we compute the 2 × 2 matrices Q(q) and P(q),

with elements Q
(q)
IJ = ∂qI/∂γJ , P

(q)
IJ = ∂p

(q)
I /∂γJ , with I = 1, 2, J = 1, 2. The DRT system

(10) must be then solved twice (eight equations must be solved).
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From the known 2 × 2 matrices Q(q) and P(q), we can also determine the matrix of
second derivatives of the travel-time field M(q), with elements

M
(q)
IJ = ∂2T/∂qI∂qJ . (14)

The 2 × 2 matrix M(q) can be easily expressed in terms of 2 × 2 matrices Q(q) and P(q)

as follows:
M(q) = P(q)(Q(q))−1 . (15)

Once the DRT system (10) for Q
(q)
IJ (τ) and P

(q)
IJ (τ) is solved along the ray Ω and M

(q)
IJ (τ)

is determined using (15), we can write the quadratic expansion for paraxial travel time
T (qi) in the vicinity of the ray Ω:

T (q1, q2, q3) = T (q3) + 1
2
qM(q)(q3)q

T , (16)

where q = (q1, q2) and T (q3) = T (q = 0, q3). Equation (16) plays a basic role in the
paraxial ray method, in the computation of paraxial approximation of the displacement
vector and in the theory of Gaussian beams, etc. It gives the paraxial travel time (possibly
complex valued) in the plane tangent to the wavefront at the point of its intersection with
the ray Ω.

The disadvantage of the expression (16) is that it can be used only in planes tangent
to the wavefronts at Ω. Thus, if we wish to determine the paraxial travel time at a point
R(q1, q2, τ) situated in a vicinity of the ray Ω, we must first find the relevant plane tangent
to the wavefront at the point τ on the ray Ω. The relevant value of τ is, however, not
known. Its determination might be a cumbersome procedure.

The procedure could be considerably simplified if the 3× 3 matrix M(x) of the second
derivatives of travel time with respect to Cartesian coordinates is known instead of the
2× 2 matrix M(q). Then it would be possible to compute simply the paraxial travel time
field in the whole vicinity of the point τ on the ray Ω, not only in the plane tangent to
the wavefront. The computation of ∂2T/∂xi∂xj from known ∂2T/∂qN∂qM is discussed in
Section 3.

3 Relation between ∂2T/∂xi∂xj and ∂2T/∂qNqM

In this section, we derive the relation between the 3×3 matrix M(x) of second derivatives
of the travel time field in Cartesian coordinates xi (i = 1, 2, 3) and the 2× 2 matrix M(q)

of second derivatives of the travel-time field in ray-centred coordinates qI (I = 1, 2). The
nine components of M(x) are denoted ∂2T/∂xi∂xj, and the four components of M(q) are
denoted ∂2T/∂qI∂qj. Both matrices are symmetric. The relation we derive is valid at any
point of the central ray Ω. We assume that the vectors p, η and U are known from ray
tracing. For ∂2T/∂xi∂xj, we can write

∂2T

∂xi∂xj

=
∂

∂xi

(
∂T

∂xj

)
=

∂

∂xi

(
∂T

∂qn

∂qn

∂xj

)
. (17)
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This equation yields

∂2T

∂xi∂xj

=
∂

∂xi

(
∂T

∂qn

)
∂qn

∂xj

+
∂T

∂qn

∂2qn

∂xi∂xj

. (18)

Along the central ray, ∂T/∂qn = δn3, see (8). Performing the differentiation in the first
term in (18), we obtain

∂2T

∂xi∂xj

=
∂qm

∂xi

∂2T

∂qn∂qm

∂qn

∂xj

+
∂2q3

∂xi∂xj

. (19)

Now we split the summation over n = 1, 2, 3 in (19) in the summation over n = N
and n = 3, and analogously the summation over m. We obtain

∂2T

∂xi∂xj

=
∂qM

∂xi

∂2T

∂qM∂qN

∂qN

∂xj

+
∂qm

∂xi

∂2T

∂qm∂q3

∂q3

∂xj

+
∂q3

∂xi

∂2T

∂q3∂qn

∂qn

∂xj

− ∂q3

∂xi

∂2T

∂q3∂q3

∂q3

∂xj

+
∂2q3

∂xi∂xj

. (20)

Taking into account eq.(8) we obtain

∂2T

∂xi∂xj

=
∂qM

∂xi

∂2T

∂qM∂qN

∂qN

∂xj

+
∂2q3

∂xi∂xj

. (21)

The result (21) is surprisingly simple, indeed. The first term can be fully computed
by dynamic ray tracing in ray-centred coordinates. Alternatively, it can be calculated by
dynamic ray tracing in orthonormal wavefront coordinates, or by incomplete dynamic ray
tracing in Cartesian coordinates. What remains to be determined is ∂2q3/∂xi∂xj.

We use the obvious relation

∂

∂xi

(
∂q3

∂xk

∂xk

∂qm

)
= 0 . (22)

This relation yields
∂2q3

∂xi∂xk

∂xk

∂qm

+
∂q3

∂xk

∂

∂xi

(
∂xk

∂qm

)
= 0 . (23)

Multiplying (23) by ∂qm/∂xj, we obtain

∂2q3

∂xi∂xj

= −∂qm

∂xj

∂q3

∂xk

∂qn

∂xi

∂2xk

∂qm∂qn

. (24)

We now again split the summation over n = 1, 2, 3 in the summation over n = N and
n = 3, and similarly for m:

∂2q3

∂xi∂xj

= −∂qM

∂xj

∂q3

∂xk

∂qN

∂xi

∂2xk

∂qM∂qN

− ∂q3

∂xj

∂q3

∂xk

∂qn

∂xi

∂2xk

∂q3∂qn

− ∂qm

∂xj

∂q3

∂xk

∂q3

∂xi

∂2xk

∂qm∂q3

+
∂q3

∂xj

∂q3

∂xk

∂q3

∂xi

∂2xk

∂q3∂q3

. (25)
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Equation (25) can be further simplified if we use the obvious identity

∂

∂q3

(
∂q3

∂xk

∂xk

∂qm

)
= 0 . (26)

Similarly as from (22), we obtain

∂

∂q3

(
∂q3

∂xk

)
∂xk

∂qm

+
∂q3

∂xk

∂2xk

∂q3∂qm

= 0 . (27)

This yields
∂q3

∂xk

∂2xk

∂q3∂qm

= −ηk
∂xk

∂qm

, (28)

as ∂(∂q3/∂xk)/∂q3 = ∂pk/∂q3 = ηk. Inserting (28) into (25), and taking into account
that the first term in (25) is zero (∂2xk/∂qM∂qN vanishes since qN and qM are Cartesian
coordinates in the plane tangent to the wavefront), we obtain

∂2q3

∂xi∂xj

=
∂q3

∂xj

∂qn

∂xi

∂xk

∂qn

ηk +
∂qm

∂xj

∂q3

∂xi

∂xk

∂qm

ηk − ∂q3

∂xj

∂q3

∂xi

∂xk

∂q3

ηk . (29)

We now take into account that

∂q3

∂xj

= pj ,
∂xk

∂q3

= Uk ,
∂xk

∂qn

∂qn

∂xi

= δki , (30)

see (5) and (6), and obtain from (29):

∂2q3

∂xi∂xj

= piηj + pjηi − pipj(Ukηk) . (31)

Equations (19) and (31) yield the final equation for ∂2T/∂xi∂xj:

∂2T

∂xi∂xj

=
∂qM

∂xi

∂2T

∂qM∂qN

∂qN

∂xj

+ piηj + pjηi − pipjUkηk . (32)

It may be useful to express the important equation (32) in the matrix form. Let us
consider the matrices H and H̄, see eq. (4) defined along the ray Ω. We denote the
columns of the matrix H, which represent contravariant basis vectors of the ray-centred
coordinate system, by ei, and the lines of the matrix H̄, which represent covariant basis
vectors, by fi:

H = (e1, e2, e3 = U) , H̄T = (f1, f2, f3 = p) . (33)

The basis vectors ei are tangential to the coordinate lines, and the basis vectors fi are
perpendicular to the coordinate surfaces. The vectors ei and fj satisfy the relation (5):

eT
i fj = δij . (34)

Then the matrix form of eq. (32) reads

M(x) = f M(q)fT + pηT + ηpT − p(UT η)pT . (35)

Here f = (f1, f2) is the 3 × 2 matrix with column vectors f1 and f2. The vectors fI are
perpendicular to the ray Ω.
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4 Concluding remarks

Equations (32) or (35) play a very important role in the paraxial ray methods, particularly
in the computation of paraxial travel time, paraxial approximation of the displacement
vector and Gaussian beams. See more details in Červený and Pšenč́ık (2009).

For dynamic ray tracing in ray-centred coordinates, eqs (32) or (35) are very useful
when we wish to find the paraxial travel time at an arbitrary point, specified in Cartesian
coordinates, in the vicinity of the reference ray.

For dynamic ray tracing in Cartesian coordinates, eqs (32) or (35) are useful for the
specification of the initial conditions. The specification of the initial conditions for M(x)

is very simple if we express M(x) in terms of M(q), for which it has a very simple physical
meaning.
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