Integral superposition
of paraxial Gaussian beams
in inhomogeneous anisotropic layered structures
in Cartesian coordinates

Vlastislav Červený1) and Ivan Pšenčík2)

1) Charles University, Faculty of Mathematics and Physics, Praha, Czech Republic
2) Institute of Geophysics, Acad. Sci., Praha, Czech Republic

SW3D meeting

June 15-16, 2015
Outline

Introduction

Integral superposition

Conclusions
Introduction

Wave modelling in inhomogeneous anisotropic media

- ray method
- coupling ray method
- paraxial ray approximations, paraxial Gaussian beams
- weighted summation of paraxial ray approximations or paraxial Gaussian beams
Integral superposition

\[G_{ij}(R, S, \omega) = \frac{\omega}{2\pi} \int_D \int \mathbf{G}^{\text{ray}}_{ij}(R_{\gamma}, S)[- \det \mathbf{N}(R_{\gamma})]^{1/2} \exp[i\omega T(R, R_{\gamma})] d\gamma_1 d\gamma_2 \]

\(\mathbf{G}(R, S, \omega) \) - Green function

\(\omega \) - circular frequency

\(\gamma_1, \gamma_2 \) - ray parameters defined on \(D \), specifying ray \(\Omega \)

\(R, S, R_{\gamma} \) - receiver, source and a point on \(\Omega \), in a vicinity of \(R \)

\(\mathbf{G}^{\text{ray}}(R_{\gamma}, S) \) - elementary ray-theory Green function

\([- \det \mathbf{N}(R_{\gamma})]^{1/2} \) - the weighting function; \(\mathbf{N} \) - \(2 \times 2 \) matrix

\(T(R, R_{\gamma}) \) - paraxial travel time at receiver \(R \)
Integral superposition

Elementary ray-theory Green function

\[G_{ij}^{\text{ray}}(R_\gamma, S) = \frac{g_i(R_\gamma)g_j(S)}{4\pi[\rho(S)\rho(R_\gamma)C(S)C(R_\gamma)]^{1/2}} \frac{\exp[iT^G(R_\gamma, S)]}{\mathcal{L}(R_\gamma, S)} \mathcal{R}^C \]

\(g(S), g(R_\gamma) \) - polarization vectors at \(S \) and \(R_\gamma \)

\(C(S), C(R_\gamma), \rho(S), \rho(R_\gamma) \) - phase velocities and densities at \(S \) and \(R_\gamma \)

\(\mathcal{L}(R_\gamma, S) \) ... the relative geometrical spreading

\(T^G(R_\gamma, S) \) ... complete phase shift due to caustics

\(\mathcal{R}^C \) ... complete reflection/transmission coefficient
Integral superposition

Weighting function

\[\mathcal{N}(R_\gamma) = -Q^{(x)T}P^{(x)} + Q^{(x)T}\mathcal{E}M(R_\gamma)\mathcal{E}^TQ^{(x)} \]

\[Q^{(x)}(R_\gamma), P^{(x)}(R_\gamma) - 3 \times 2 \text{ parts of } \hat{Q}^{(x)}, \hat{P}^{(x)} \]

\[\hat{Q}^{(x)}(R_\gamma), \hat{P}^{(x)}(R_\gamma) - 3 \times 3 \text{ paraxial matrices obtained from DRT} \]

\[M(R_\gamma) - 2 \times 2 \text{ matrix of Gaussian-beam parameters (given)} \]

\[\mathcal{E}(R_\gamma) - 3 \times 2 \text{ matrix } \mathcal{E} = (e_1, e_2) \text{ (given)} \]

\[e_i - \text{ unit vectors, } \quad e_1^T e_2 = 0, \quad e_1^T p = 0, \quad p - \text{ slowness vector} \]
Integral superposition

Travel time

\[T(R, R_\gamma) = T(R_\gamma) + x^T(R, R_\gamma)p(R_\gamma) + \frac{1}{2}x^T(R, R_\gamma)\hat{M}^{(x)}(R_\gamma)x(R, R_\gamma) \]

\[T(R_\gamma) \text{ - travel time at } R_\gamma, \quad x(R, R_\gamma) = x(R) - x(R_\gamma) \]

\[\hat{M}^{(x)}(R_\gamma) = \mathcal{F}M\mathcal{F}^T + p\eta^T + \eta p^T - p(\mathcal{U}^T\eta)p^T; \quad \hat{M}^{(x)} \text{ - } 3 \times 3 \text{ matrix} \]

\[M(R_\gamma) \text{ - } 2 \times 2 \text{ - matrix of Gaussian-beam parameters (given)} \]

\[\mathcal{F}(R_\gamma) \text{ - } 3 \times 2 \text{ matrix } \mathcal{F} = (f_1, f_2) \quad f_1 = C^{-1}(e_2 \times \mathcal{U}) \quad f_2 = C^{-1}(\mathcal{U} \times e_1) \]

\[p, \eta, \mathcal{U} \text{ - slowness, eta, ray-velocity vector, } e_I \text{ vectors given} \]
Conclusions

- applicable to 3D inhomogeneous anisotropic media with curved structural interfaces
- applicable to separate P, S1 and S2 waves
- applicable to coupled S waves in weak anisotropy or around S-wave singularities
- applicable to summation of paraxial ray approximations, including Maslov-Chapman integrals
- applicable to moment-tensor point sources
Conclusions

- DRT performed in Cartesian coordinates
- 3×2 parts of 3×3 paraxial matrices sufficient
- no need for two-point ray tracing
- removes or smoothes singularities of standard ray theory
- no need for computation of vector bases along ray Ω
Acknowledgements