Second-order traveltimes and first-order spreading of reflected/transmitted P waves in inhomogeneous, weakly anisotropic media

Ivan Pšenčík1) and Véronique Farra2)

1) Institute of Geophysics, Acad. Sci. Praha, Czech Republic
2) Institut de Physique du Globe, Paris, France

SW3D meeting

June 11-12, 2012
Outline
Outline

Introduction
Outline

Introduction

FORT and FODRT in smooth media
Outline

Introduction

FORT and FODRT in smooth media

Transformation of slowness vector at an interface
Outline

Introduction
FORT and FODRT in smooth media
Transformation of slowness vector at an interface
Traveltime and spreading across an interface
Outline

Introduction
FORT and FODRT in smooth media
Transformation of slowness vector at an interface
Traveltime and spreading across an interface
Conclusions
Introduction

Available: P and coupled S waves (FORT, FODRT) in smoothly varying, weakly anisotropic media

Generalization: layered, weakly anisotropic media

Two-step generalization:

- transformation of slowness vectors across an interface
- transformation of amplitudes across an interface

This presentation: P-wave traveltimes and spreading in layered media
FORT and FODRT in smooth media

Decisive role in RT and DRT played by eigenvalue $G(x, p)$ of the Christoffel matrix $\Gamma(x, p)$

$$G(x, p) = a_{ijkl} p_j p_l g_i g_k$$

- a_{ijkl} - density-normalized elastic moduli
- x - Cartesian coordinates
- p - slowness vector
- g - polarization vector
FORT and FODRT in smooth media

Basic idea: replace exact $G(x, p)$ by $G^{(1)}(x, p)$ everywhere!

Perturbation of P-wave eigenvalue $G(x, p)$

$$G(x, p) \sim G^{(1)}(x, p) = G^{(0)}(x, p) + \Delta G(x, p)$$

$G^{(0)}(x, p)$ - eigenvalue of Γ in reference isotropic medium

$\Delta G(x, p)$ - first-order perturbation of $G^{(0)}(x, p)$

$G^{(1)}(x, p)$ - first-order approximation of $G(x, p)$

independent of the choice of reference
FORT and FODRT in smooth media

\[G(x, p) \] - first-order approximation of P-wave eigenvalue

Eikonal equation: \[G(x, p) = 1 \]

Ray-tracing equations (FORT):

\[\frac{dx_i}{d\tau} = \frac{1}{2} \frac{\partial G}{\partial p_i}, \quad \frac{dp_i}{d\tau} = -\frac{1}{2} \frac{\partial G}{\partial x_i} \]

\(x_i \) - ray coordinates of the first-order ray

\(p_i \) - components of the first-order slowness vector \(p \)

\(\tau \) - first-order traveltime
FORT and FODRT in smooth media

\[\mathcal{L} = |X^{(1)} \times X^{(2)}|^{1/2} \] - first-order geometrical spreading

Dynamic ray-tracing equations (FODRT):

\[
dX_i^{(I)} / d\tau = \frac{1}{2} \left(\frac{\partial^2 G(x,p)}{\partial p_i \partial x_j} X_j^{(I)} + \frac{\partial^2 G(x,p)}{\partial p_i \partial p_j} Y_j^{(I)} \right)
\]

\[
dY_i^{(I)} / d\tau = -\frac{1}{2} \left(\frac{\partial^2 G(x,p)}{\partial x_i \partial x_j} X_j^{(I)} + \frac{\partial^2 G(x,p)}{\partial x_i \partial p_j} Y_j^{(I)} \right)
\]

\[X_i^{(I)} = [\partial x_i / \partial \gamma^{(I)}]_{\tau=\text{const}} , \quad Y_i^{(I)} = [\partial p_i / \partial \gamma^{(I)}]_{\tau=\text{const}} \]

\(\gamma^{(I)} \) - ray parameters (e.g., take-off angles)
FORT and FODRT in smooth media

Second-order traveltime correction

$$\Delta \tau = -\frac{1}{2} \int_{\Omega} [c(x, n)]^{-2} [B_{13}^2(x, n) + B_{23}^2(x, n)]/(V_P^2 - V_S^2) d\tau$$

$$(c^{-2} = p_i p_i) \quad - \text{first-order phase velocity}$$

$V_P, V_S \quad - \text{P- and S-wave reference velocities along ray } \Omega$

efficient choice: \quad $$V_P^2 = B_{33}, \quad V_S^2 = 0.5(B_{11} + B_{22})$$

$$B_{mn}(x, n) = a_{ijkl}(x)n_i n_l e_j^{[m]} e_k^{[n]}$$

$$a_{ijkl} \quad - \text{density-normalized elastic moduli}$$

$$e^{[m]} \quad - \text{triplet of orthogonal unit vectors,} \quad e^{[3]} = n = c p$$
Transformation of slowness vector

$$p_i^G - (p_k^G N_k)N_i = p_i - (p_k N_k)N_i \quad \text{(Snell law)}$$

N - unit normal to the interface

p - first-order slowness vector of incident wave

p^G - first-order slowness vector of generated wave

$$p_i^G = b_i + \xi^G N_i \quad b_i = p_i - (p_k N_k)N_i$$

ξ^G - sought quantity

$$G(b_i + \xi^G N_i) = 1 \quad \text{- polynomial equation of 4th degree}$$

G corresponds to generated wave
Transformation of slowness vector

\[G(b_i + \xi^G N_i) = 1 \] - polynomial equation of 4th degree

a) numerical solution

b) iterative solution (arbitrary incidence, arbitrary contrast)

Iterative solution

commonly \(\leq 2 \) iterations to reach \(\xi^{G(j)} - \xi^{G(j-1)} < 10^{-5} \)

\[p^{G\{j\}} = b + \xi^{G\{j\}} N \]

\[\xi^{G\{j\}} = \xi^{G\{j-1\}} - \frac{G(p^{G\{j-1\}}_{-1})}{N_k \partial G/\partial p_k(p^{G\{j-1\}})} \] \(\xi^{G\{0\}} \) - reference isotropic medium
Transformation of slowness vector

MODEL: ISO/HTI

ISO A: $\alpha = 4.0 \text{ km/s}, \beta = 2.31 \text{ km/s}$
ISO B: $\alpha = 3.0 \text{ km/s}, \beta = 1.73 \text{ km/s}$

0^0 - vertical propagation
90^0 - propagation along x-axis (axis of symmetry)

HTI:

Anisotropy: $\sim 24\%$
Contrast (normal \rightarrow tangent. inc.): A: $2\% \rightarrow 26\%$, B: $26\% \rightarrow 2\%$
Transformation of slowness vector

Angular deviations (deg) of approximate from exact slowness vectors of transmitted P waves

θ, φ specify the direction of slowness vector of incident P wave

MODEL A

MODEL B
Traveltime and spreading across an interface
Traveltime and spreading across an interface

Two-layer HTI model

Layer 1: 0-1 km; symmetry axis rotates $45^0 \rightarrow 0^0$
vertical variation of WA parameters

Layer 2: 1-3 km; symmetry axis rotates $0^0 \rightarrow 45^0$
no variation of WA parameters

Anisotropy: $\sim 8\%$; contrast: $\sim 23\%$
Traveltime and spreading across an interface transmitted wave
Traveltime and spreading across an interface reflected wave
Traveltime and spreading across an interface
Traveltime and spreading across an interface
ORT model

0-1 km; vertical gradient ORT layer

ORT homogeneous halfspace

\((x,z)\)

Anisotropy: \(\sim 20\%\); contrast (normal \(\rightarrow\) tangent. inc.): \(\sim 22\% \rightarrow 39\%\)
Traveltime and spreading across an interface transmitted wave
Traveltime and spreading across an interface reflected wave
Traveltime and spreading across an interface
Conclusions

P-wave separated from S wave

Second-order traveltime, first-order spreading

Accuracy of approximate traveltime and spreading in layered media comparable with accuracy in smooth media

Efficient iterative determination of slowness vectors of generated waves, arbitrary contrast, arbitrary angle of incidence

P-wave WA R/T coefficients available (Farra & Pšenčík, 2010) ⇒
next step: seismograms of R/T P waves
Acknowledgements

Research project P210/11/0117
of the Grant Agency of the CR