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Notation

Indices 1, j,... = 1,2,3. The Einstein summation over repetitive indices.
The equation labels correspond to Klimes (2018).

Frequency-domain viscoelastic stiffness tensor

Symmetry of the frequency-domain elastic or viscoelastic stiffness tensor
Ukl = Gkl (pm ).
Akl _ ikl Akl — ijlk (1,2)
= = , ,
Additional symmetry of the frequency-domain stiffness tensor proved in
an elastic medium but not in a viscoelastic medium:

Y

Czjk:l — Ckillj . (3)
Frequency-domain viscoelastic stiffness tensor:
Cijkl#cklzj . (4)

Unfortunately, we currently do not know a real viscoelastic material with
a non-symmetric stiffness matrix.

However, we propose the frequency-domain ray series for viscoelastic
waves with a stiffness tensor which is non-symmetric with respect to the
exchange of the first pair of indices and the second pair of indices.



Viscoelastodynamic equation in the frequency domain

Anisotropic viscoelastodynamic equation for complex-valued displace-
ment u; = u;(z",w) in the frequency domain outside sources:

(Cijklulvk),j — (iw)QQui =0 . (5)

Lower-case Roman subscript j following a comma denotes the partial

derivative with respect to corresponding spatial coordinate z*.

0= o(x™)... density,
w... circular frequency.
Ray series

Displacement in terms of its frequency-dependent complex-valued vecto-
rial amplitude U; = U;(z™,w) and travel time 7 = 7(z™):

u; = Uz exp(iwT) . (6)

High-frequency asymptotic series

U, = Z iw) U[n : (7)



We consider standard anisotropic ray theory assuming strictly decoupled
S waves, and proceed according to Cerveny (2001) using differential op-
erators

N Uy Tn) =0 T4 ™, 7)) U — U] (9)
Mi(Um,TJL) = (CijklﬁkUl),j + Cijle,jUhk y (10)
LY (Up) = (U1 ) ;- (11)
Christoffel matrix
7 m 17 m ny1—1
(@™, pp) = (™) p; pr [o(z™)] (12)

is a function of six phase-space coordinates =™, p,, formed by three spatial
coordinates ' and three slowness-vector components p,,.

We insert high-frequency asymptotic series (7) into the viscoelastody-
namic equation and sort the terms according to the order of iw, analo-
gously to Cerveny (1972; 2001, sec. 5.7). We then obtain the system of

equations
NUM ) + Mo ) + Lo =0 (14)

for each order n =0, 1,2, .... Here U,L_l] =0 and U,L_z] = 0, i.e., operator
M?" is missing in this equation for n = 0 and operator L' is missing in
this equation for n =0, 1.



Eigenvectors and eigenvalues of the Christoffel matrix

The Christoffel matrix is not symmetric. Its right-hand eigenvectors differ
from its left-hand eigenvectors.

Right-hand eigenvector g; = g;(z™, 7,,), corresponding to selected eigen-
value G = G(x™,7,,) of the Christoffel matrix:

I''g=Gg . (16)
Corresponding left-hand eigenvector g, = g, (™, 7.,,):
9; It = aG . (17)

We denote by Gt the other two eigenvalues of the Christoffel matrix,
by gi- the corresponding right-hand eigenvectors, and by gﬁ‘ the corre-
sponding left-hand eigenvectors. Superscript + takes two values. The
three right-hand eigenvectors of the Christoffel matrix and the three left-
hand eigenvectors of the Christoffel matrix are mutually biorthogonal,
and we choose them mutually biorthonormal.



Eikonal equation

Eikonal equation
G(z™,17,) =1 (20)
can be solved by the standard methods developed for solving the Hamil-

ton-Jacobi equation (Hamilton, 1837; Cerveny, 1972; Klimes, 2002;
2016).



Principal and additional amplitude components

Decomposition of a vectorial amplitude into principal amplitude compo-

nent Ui[n] and two additional amplitude components U [":

UM =ullg + 3 Ut gl (30)
L
Additional amplitude components:
LAl (/S I 2 (57 ) | (A I € )

with both U+l = 0,



Zero-order principal amplitude component
Zero-order principal amplitude component:

U = U (00 Jo)® (0 ) % exp([ dvS) . (40)
Subscript ¢ denotes the initial conditions.

Squared geometrical spreading

ox’
J = det<87a> (41)

represents the Jacobian of transformation from ray coordinates 1, ~?2, 3
to spatial coordinates z'. These ray coordinates are composed of ray
parameters v and 72, and of travel time 3 =7 along rays.



“Non-reciprocity” due to a non-symmetric stiffness matrix

Difference between symmetric and non-symmetric stiffness matrices:

1 ork! orrs ork! orrs —1
S =- E G, —— T s__) T S <G—GL>
4 - <gk: (9:1:’3 g1 9» apj g 9k apj g1 9» g

oxJ
1 — (] ikj — d 1
_ 4_9 g?, (C Jk?l_ C klejT,k:gl — gZ dgf]y (55)
dg;

Term g, 34~ represents just the correction of principal amplitude U™ due
to the undefined length of right-hand eigenvector g;, and may be put to
Z€ero.

Quantity S may be singular at slowness-surface singularities, but is reg-
ular at spatial caustics.

Quantity S vanishes for a symmetric stiffness matrix. For a non-symmet-
ric stiffness matrix, quantity S vanishes in a homogeneous medium.

Quantity S is thus generated by a combination of a non-symmetric stiff-
ness matrix and heterogeneities.



Higher-order principal amplitude components

Higher-order principal amplitude components:

U[n] Td 7[n—1]
g +/TO TNV

0

Ul — ol

with

I

(39)



Conclusions

We have derived the anisotropic-ray-theory series for viscoelastic waves
with a non-symmetric stiffness matrix. These ray series enable us to
estimate which phenomena could be observed in the wave field if the
stiffness matrix were non-symmetric.

Whereas the two S waves, which propagate with different velocities, are
linearly polarized in elastic media, they may be elliptically or even circu-
larly polarized in viscoelastic media. Whereas the two elliptically polar-
ized S waves always display equal handedness for a symmetric stiffness
matrix, they display opposite handedness for a sufficiently non-symmetric

stiffness matrix, similarly as electromagnetic waves in optically active me-
dia.

The ray-theory amplitudes corresponding to a non-symmetric stiffness
matrix are not reciprocal in the same way as the ray-theory amplitudes
corresponding to a symmetric stiffness matrix. This “non-reciprocity”
is expressed in terms of quantity S in the expression for the zero-order
ray-theory amplitude. Refer to Klimes (2017, eq. 18) for the sense in
which the ray-theory Green function corresponding to a non-symmetric
stiffness matrix is reciprocal.



References:

Cerveny, V. (1972): Seismic rays and ray intensities in inhomogeneous
anisotropic media. Geophys. J. R. astr. Soc., 29, 1-13.

Cerveny, V. (2001): Seismic Ray Theory. Cambridge Univ. Press, Cam-
bridge.

Hamilton, W.R. (1837): Third supplement to an essay on the theory of
systems of rays. Trans. Roy. Irish Acad., 17, 1-144, read January
23, 1832, and October 22, 1832.

Klimes, L. (2002): Second-order and higher-order perturbations of travel
time in isotropic and anisotropic media. Stud. geophys. geod., 46,
213-248, online at “http://sw3d.cz”.

Klimes, L. (2016): Transformation of spatial and perturbation derivatives
of travel time at a curved interface between two arbitrary media.
Stud. geophys. geod., 60, 451-470, online at “http://sw3d.cz”.

Klimes, L. (2017): Representation theorem for viscoelastic waves with
a non-symmetric stiffness matrix. Seismic Waves in Complex 3-D
Structures, 27, 93-96, online at “http://sw3d.cz”.

Klimes, L. (2018): Frequency-domain ray series for viscoelastic waves

with a non—symmetric stiffness matrix. Stud. geophys. geod., 62,
261-271, online at “http://sw3d.cz”.



Acknowledgements
The research has been supported:
by the Grant Agency of the Czech Republic under contract 16-052378S,

and by the consortium “Seismic Waves in Complex 3-D Structures”

http://sw3d.cz



