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Notation

Indices i, j, ... = 1, 2, 3. The Einstein summation over repetitive indices.
The equation labels correspond to Klimeš (2018).

Frequency-domain viscoelastic stiffness tensor

Symmetry of the frequency-domain elastic or viscoelastic stiffness tensor
cijkl = cijkl(xm, ω):

cijkl = cjikl , cijkl = cijlk . (1, 2)

Additional symmetry of the frequency-domain stiffness tensor proved in
an elastic medium but not in a viscoelastic medium:

cijkl = cklij . (3)

Frequency-domain viscoelastic stiffness tensor:

cijkl 6=cklij . (4)

Unfortunately, we currently do not know a real viscoelastic material with
a non-symmetric stiffness matrix.

However, we propose the frequency-domain ray series for viscoelastic
waves with a stiffness tensor which is non-symmetric with respect to the
exchange of the first pair of indices and the second pair of indices.



Viscoelastodynamic equation in the frequency domain

Anisotropic viscoelastodynamic equation for complex-valued displace-
ment ui = ui(x

m, ω) in the frequency domain outside sources:

(cijklul,k),j − (iω)2̺ ui = 0 . (5)

Lower-case Roman subscript ,k following a comma denotes the partial
derivative with respect to corresponding spatial coordinate xk.
̺ = ̺(xm)... density,
ω... circular frequency.

Ray series

Displacement in terms of its frequency-dependent complex-valued vecto-
rial amplitude Ui = Ui(x

m, ω) and travel time τ = τ(xm):

ui = Ui exp(iωτ) . (6)

High-frequency asymptotic series

Ui =
∞
∑

n=0

(iω)−n U
[n]
i . (7)



We consider standard anisotropic ray theory assuming strictly decoupled
S waves, and proceed according to Červený (2001) using differential op-
erators

N i(Um, τ,n) = ̺ [Γil(xm, τ,n)Ul − Ui] , (9)

M i(Um, τ,n) = (cijklτ,kUl),j + cijklτ,jUl,k , (10)

Li(Um) = (cijklUl,k),j . (11)

Christoffel matrix

Γil(xm, pn) = cijkl(xm) pj pk

[

̺(xn)
]−1

(12)

is a function of six phase-space coordinates xm, pn formed by three spatial
coordinates xm and three slowness-vector components pn.

We insert high-frequency asymptotic series (7) into the viscoelastody-
namic equation and sort the terms according to the order of iω, analo-
gously to Červený (1972; 2001, sec. 5.7). We then obtain the system of
equations

N i
(

U
[n]
k , τ,l

)

+ M i
(

U
[n−1]
k , τ,l

)

+ Li
(

U
[n−2]
k

)

= 0 (14)

for each order n = 0, 1, 2, .... Here U
[−1]
k = 0 and U

[−2]
k = 0, i.e., operator

M i is missing in this equation for n = 0 and operator Li is missing in
this equation for n = 0, 1.



Eigenvectors and eigenvalues of the Christoffel matrix

The Christoffel matrix is not symmetric. Its right-hand eigenvectors differ
from its left-hand eigenvectors.

Right-hand eigenvector gi = gi(x
m, τ,n), corresponding to selected eigen-

value G = G(xm, τ,n) of the Christoffel matrix:

Γil gl = G gi . (16)

Corresponding left-hand eigenvector ~gi = ~gi(x
m, τ,n):

~gi Γil = ~gl G . (17)

We denote by G⊥ the other two eigenvalues of the Christoffel matrix,
by g⊥i the corresponding right-hand eigenvectors, and by ~g

⊥

i the corre-
sponding left-hand eigenvectors. Superscript ⊥ takes two values. The
three right-hand eigenvectors of the Christoffel matrix and the three left-
hand eigenvectors of the Christoffel matrix are mutually biorthogonal,
and we choose them mutually biorthonormal.



Eikonal equation

Eikonal equation
G(xm, τ,n) = 1 (20)

can be solved by the standard methods developed for solving the Hamil-
ton-Jacobi equation (Hamilton, 1837; Červený, 1972; Klimeš, 2002;
2016).



Principal and additional amplitude components

Decomposition of a vectorial amplitude into principal amplitude compo-

nent U
[n]
i and two additional amplitude components U⊥[n]:

U
[n]
i = U [n]gi +

∑

⊥

U⊥[n] g⊥i . (30)

Additional amplitude components:

U⊥[n] = −̺−1
[

~g
⊥

i M i
(

U
[n−1]
k , τ,n

)

+ ~g
⊥

i Li
(

U
[n−2]
k

)

]

(

G⊥ − 1
)−1

(32)

with both U⊥[0] = 0.



Zero-order principal amplitude component

Zero-order principal amplitude component:

U [0] = U
[0]
0 (̺0 J0)

1

2 (̺ J)−
1

2 exp
(∫ τ

τ0

dγ S
)

. (40)

Subscript 0 denotes the initial conditions.

Squared geometrical spreading

J = det

(

∂xi

∂γa

)

(41)

represents the Jacobian of transformation from ray coordinates γ1, γ2, γ3

to spatial coordinates xi. These ray coordinates are composed of ray
parameters γ1 and γ2, and of travel time γ3 =τ along rays.



“Non-reciprocity” due to a non-symmetric stiffness matrix

Difference between symmetric and non-symmetric stiffness matrices:

S =
1

4

∑

⊥

(

~gk

∂Γkl

∂xj
g⊥l ~g

⊥

r

∂Γrs

∂pj

gs − ~gk

∂Γkl

∂pj

g⊥l ~g
⊥

r

∂Γrs

∂xj
gs

)

(

G−G⊥

)−1

− 1

4̺
~gi

(

cijkl− cikjl
)

,j
τ,kgl − ~gi

dgi

dγ
. (55)

Term ~gi
dgi

dγ
represents just the correction of principal amplitude U [n] due

to the undefined length of right-hand eigenvector gi, and may be put to
zero.

Quantity S may be singular at slowness-surface singularities, but is reg-
ular at spatial caustics.

Quantity S vanishes for a symmetric stiffness matrix. For a non-symmet-
ric stiffness matrix, quantity S vanishes in a homogeneous medium.

Quantity S is thus generated by a combination of a non-symmetric stiff-
ness matrix and heterogeneities.



Higher-order principal amplitude components

Higher-order principal amplitude components:

U [n] = U [0]

[

U
[n]
0

U
[0]
0

+

∫ τ

τ0

dγ
Z [n−1]

U [0] √̺

]

(42)

with

Z [n−1] = − 1

2
√

̺

[

∑

⊥

~giM
i
(

U⊥[n]g⊥k , τ,n

)

+ ~giL
i
(

U
[n−1]
k

)

]

. (39)



Conclusions

We have derived the anisotropic-ray-theory series for viscoelastic waves
with a non-symmetric stiffness matrix. These ray series enable us to
estimate which phenomena could be observed in the wave field if the
stiffness matrix were non-symmetric.

Whereas the two S waves, which propagate with different velocities, are
linearly polarized in elastic media, they may be elliptically or even circu-
larly polarized in viscoelastic media. Whereas the two elliptically polar-
ized S waves always display equal handedness for a symmetric stiffness
matrix, they display opposite handedness for a sufficiently non-symmetric
stiffness matrix, similarly as electromagnetic waves in optically active me-
dia.

The ray-theory amplitudes corresponding to a non-symmetric stiffness
matrix are not reciprocal in the same way as the ray-theory amplitudes
corresponding to a symmetric stiffness matrix. This “non-reciprocity”
is expressed in terms of quantity S in the expression for the zero-order
ray-theory amplitude. Refer to Klimeš (2017, eq. 18) for the sense in
which the ray-theory Green function corresponding to a non-symmetric
stiffness matrix is reciprocal.
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