Nonlinear hypocentre determination

Petr Bulant, Václav Bucha, Luděk Klimeš

Charles University in Prague, Faculty of Mathematics and Physics, Department of Geophysics

http://sw3d.cz

Seminar on seismology, Praha, 27.11.2015
Hypocentre determination

Hypocentre determination means calculation of coordinates of the hypocentre and of the hypocentral time, i.e. 4 unknown quantities.

We calculate them from measured arrival times, and thus, theoretically, 4 arrival times could be sufficient for hypocentre determination (assuming perfect measurement of the arrival times, perfect knowledge of the structure and perfect modelling of the theoretical travel times).

This presentation is devoted to possibilities how to make use of the surplus (above the 4 essentially needed) arrivals in the standard situation, when neither arrival time measurement, nor the knowledge of the structure and theoretical travel times are perfect.
Hypocentre determination means calculation of coordinates of the hypocentre and of the hypocentral time of a seismic event. We calculate them from a seismic recording of the event.
Hypocentre determination

Usually, we calculate the hypocentre location from the measured arrival times of seismic body waves (P-waves and/or S-waves).
Hypocentre determination

Nevertheless, the measured P-wave and S-wave arrival times are not sufficient for hypocentre location.
Hypocentre determination

We need to know also the velocity model of the structure in which we are able to calculate the theoretical travel times.
Hypocentre determination

We need to know also the velocity model of the structure in which we are able to calculate the theoretical travel times. Then we can calculate the hypocentre location as a space-time point with minimum difference between the theoretical travel times and measured arrival times.
Hypocentre determination

But, usually, we are interested not only in the hypocentre location (as a space-time point with minimum difference between the theoretical travel times and measured arrival times), but also in the uncertainty of the location.
Hypocentre determination

Then the arrival times and velocity model are not sufficient input for the location, ….
Hypocentre determination

measured P-wave and S-wave arrivals
velocity model
uncertainty of measured arrival times

locations of hypocentres
uncertainty of the hypocentres

Then the arrival times and velocity model are not sufficient input for the location, and we need to add the uncertainty of the measured arrival times,
Hypocentre determination

The uncertainty of the measured arrival times can technically produce some uncertainty of the hypocentres. But, using only the uncertainty of arrival times in fact means assuming perfect knowledge of the structure and perfect modelling, which is usually not the case.
Hypocentre determination

Thus, the arrival times and velocity model are not sufficient input for the location, and we need to add the uncertainty of the measured arrival times, and the uncertainty of the velocity model, and the uncertainty caused by the errors of the theoretical travel times.
Hypocentre determination

Thus, the arrival times and velocity model are not sufficient input for the location, and we need to add the uncertainty of the measured arrival times, and the uncertainty of the velocity model, and the uncertainty caused by the errors of the theoretical travel times. Then we can obtain the hypocentre location as not only a single space-time point, but as a probability function which describes the uncertainty of the location.

- measured P-wave and S-wave arrivals
- velocity model
- uncertainty of measured arrival times
- uncertainty of the model and travel times
- locations of hypocentres
- uncertainty of the hypocentres
Hypocentre determination

- measured P-wave and S-wave arrivals
- velocity model
- uncertainty of measured arrival times
- uncertainty of the model and travel times

- locations of hypocentres
- uncertainty of the hypocentres
Hypocentre determination

measured P-wave and S-wave arrivals
velocity model
uncertainty of measured arrival times
uncertainty of the model and travel times

locations of hypocentres
uncertainty of the hypocentres

The method
Hypocentre determination

- measured P-wave and S-wave arrivals
- velocity model
- uncertainty of measured arrival times
- locations of hypocentres
- uncertainty of the model and travel times
- uncertainty of the hypocentres

Tarantola & Valette (1982): nonlinear hypocentre determination consisting in direct evaluation of the nonnormalized 3-D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, discretized at the gridpoints of a sufficiently dense 3-D spatial grid of points.

We describe the uncertainty of the velocity model by the model covariance function, which is projected onto the uncertainty of the hypocentral position through the geometrical covariances of theoretical travel times calculated in the velocity model (Klimeš 2002a, 2008).
Hypocentre determination

- measured P-wave and S-wave arrivals
- velocity model
- uncertainty of measured arrival times
- uncertainty of the model and travel times

locations of hypocentres
uncertainty of the hypocentres

Tarantola & Valette (1982): nonlinear hypocentre determination consisting in direct evaluation of the nonnormalized 3-D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, discretized at the gridpoints of a sufficiently dense 3-D spatial grid of points.

We describe the uncertainty of the velocity model by the model covariance function, which is projected onto the uncertainty of the hypocentral position through the geometrical covariances of theoretical travel times calculated in the velocity model (Klimeš 2002a, 2008).

- uncertainty of the velocity model
described by model covariance function

geometrical travel-time covariance matrix

nonnormalized 3-D marginal a posteriori density function
Hypocentre determination

Tarantola & Valette (1982): nonlinear hypocentre determination consisting in direct evaluation of the nonnormalized 3-D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, discretized at the gridpoints of a sufficiently dense 3-D spatial grid of points.

We describe the uncertainty of the velocity model by the model covariance function, which is projected onto the uncertainty of the hypocentral position through the geometrical covariances of theoretical travel times calculated in the velocity model (Klimeš 2002a, 2008).

minimum arrival-time residuals (arrival-time misfit)
Hypocentre determination

measured P-wave and S-wave arrivals
velocity model
uncertainty of measured arrival times
uncertainty of the model and travel times

locations of hypocentres
uncertainty of the hypocentres

Tarantola & Valette (1982): nonlinear hypocentre determination consisting in direct evaluation of the nonnormalized 3-D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, discretized at the gridpoints of a sufficiently dense 3-D spatial grid of points.

We describe the uncertainty of the velocity model by the model covariance function, which is projected onto the uncertainty of the hypocentral position through the geometrical covariances of theoretical travel times calculated in the velocity model (Klimeš 2002a, 2008).

uncertainty of the velocity model
described by model covariance function

gеometricаl
travel-time
covariance matrix

nonnormalized 3-D marginal a posteriori density function

estimation of the uncertainty of the velocity model

minimum arrival-time residuals (arrival-time misfit)

The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996)
Hypocentre determination

Tarantola & Valette (1982): nonlinear hypocentre determination consisting in direct evaluation of the nonnormalized 3-D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, discretized at the gridpoints of a sufficiently dense 3-D spatial grid of points.

We describe the uncertainty of the velocity model by the model covariance function, which is projected onto the uncertainty of the hypocentral position through the geometrical covariances of theoretical travel times calculated in the velocity model (Klimeš 2002a, 2008).

The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996).
Hypocentre determination

Tarantola & Valette (1982): nonlinear hypocentre determination consisting in direct evaluation of the nonnormalized 3-D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, discretized at the gridpoints of a sufficiently dense 3-D spatial grid of points.

We describe the uncertainty of the velocity model by the model covariance function, which is projected onto the uncertainty of the hypocentral position through the geometrical covariances of theoretical travel times calculated in the velocity model (Klimeš 2002a, 2008).

The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996).
Hypocentre determination

- measured P-wave and S-wave arrivals
- velocity model
- uncertainty of measured arrival times
- uncertainty of travel-time computing
- locations of hypocentres
- uncertainty of the hypocentres
- uncertainty of the velocity model

Tarantola & Valette (1982): nonlinear hypocentre determination consisting in direct evaluation of the nonnormalized 3-D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, discretized at the gridpoints of a sufficiently dense 3-D spatial grid of points.

We describe the uncertainty of the velocity model by the model covariance function, which is projected onto the uncertainty of the hypocentral position through the geometrical covariances of theoretical travel times calculated in the velocity model (Klimeš 2002a, 2008).

- uncertainty of the velocity model described by model covariance function
- nonnormalized 3-D marginal a posteriori density function
- geometrical travel-time covariance matrix
- update model covariance function
- estimation of the uncertainty of the velocity model
- minimum arrival-time residuals (arrival-time misfit)

The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996)
Notes on numerical implementation of the algorithm

uncertainty of the velocity model described by model covariance function

update model covariance function

estimation of the uncertainty of the velocity model

nonnormalized 3-D marginal a posteriori density function

minimum arrival-time residuals (arrival-time misfit)

The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996)

geometrical travel-time covariance matrix
Notes on numerical implementation of the algorithm

approximate matrix Θ by diagonal matrix Θ_{kk}
introduce standard deviation of theoretical times σ^2
so that $\Theta_{kk} = \Theta_{0kk} \sigma^2$

uncertainty of the velocity model
described by model covariance function
geometrical travel-time covariance matrix Θ
update model covariance function
estimation of the uncertainty of the velocity model

nonnormalized 3-D marginal a posteriori density function
minimum arrival-time residuals
(arrival-time misfit)

The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996)
Notes on numerical implementation of the algorithm

- approximate matrix Θ by diagonal matrix Θ_{kk}
- introduce standard deviation of theoretical times σ^2
- so that $\Theta_{kk} = \Theta_{0kk} \sigma^2$

- geometrical travel-time covariance matrix Θ
- nonnormalized 3-D marginal a posteriori density function
- uncertainty of the velocity model described by model covariance function
- update model covariance function
- estimation of the uncertainty of the velocity model
- minimum arrival-time residuals (arrival-time misfit)
- calculate arrival-time misfit y from the maximum of the nonnormalized marginal a posteriori density function

The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996)
Notes on numerical implementation of the algorithm

- approximate matrix Θ by diagonal matrix Θ_{kk}
- introduce standard deviation of theoretical times σ^2
- so that $\Theta_{kk} = \Theta_{0kk} \sigma^2$
- geometrical travel-time covariance matrix Θ
- uncertainty of the velocity model described by model covariance function
- nonnormalized 3-D marginal a posteriori density function
- update model covariance function
- estimation of the uncertainty of the velocity model
- minimum arrival-time residuals (arrival-time misfit)
- calculate arrival-time misfit y from the maximum of the nonnormalized marginal a posteriori density function
- theoretically the mean arrival-time misfit $<y>$ should equal number of arrival times N minus 4
 $<y> = N - 4$
- The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996)
- introduce standard deviation of theoretical times σ^2 so that $\Theta_{kk} = \Theta_{0kk} \sigma^2$
Numerical examples

2 numerical examples:

1) 4 local natural earthquakes in Western Bohemia

2) Microseismic monitoring of 33 natural events
Numerical example 1

- 4 local natural events in Western Bohemia
- 10 stations (event no 4 was registered only on 6 stations)
- P-wave arrival times only
- smooth 3-D velocity model of Western Bohemia (Klimes 1995)
- standard deviations of theoretical travel times and the Hurst exponent obtained from refraction measurements (Klimes 2002b)
Numerical example 1

The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996)

Theoretically the mean arrival-time misfit $<y>$ should equal number of arrival times N minus 4 $<y> = N - 4$
Part of the Western Bohemia a priori velocity model with the receivers and surface P wave velocities (the shadows are caused by the topography). Values of the velocity increase from **green** to **red** colour. The thick line rectangle limits the location grid, 30 × 30 km, depth is 17 km. The grid step is 0.5 km in all three directions. Receivers HBC and STC are not considered.
Measured data

- The hypocentre determination code is tested by determining hypocentres of four local earthquakes recorded on January 1997 by the WEB-NET local seismic network and one receiver in Germany.

- Three tested local earthquakes were measured by 10 receivers and one event was recorded by 6 receivers.

<table>
<thead>
<tr>
<th>receiver</th>
<th>event 1</th>
<th>event 2</th>
<th>event 3</th>
<th>event 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAC–Částkov</td>
<td>30.168</td>
<td>45.100</td>
<td>59.812</td>
<td>21.292</td>
</tr>
<tr>
<td>KOC–Kopaniny</td>
<td>31.316</td>
<td>46.228</td>
<td>60.972</td>
<td>22.788</td>
</tr>
<tr>
<td>KRC–Kraslice</td>
<td>30.856</td>
<td>45.804</td>
<td>60.484</td>
<td>22.292</td>
</tr>
<tr>
<td>LAC–Lazy</td>
<td>32.720</td>
<td>47.656</td>
<td>62.340</td>
<td></td>
</tr>
<tr>
<td>NKC–Nový Kostel</td>
<td>29.856</td>
<td>44.748</td>
<td>59.512</td>
<td>21.060</td>
</tr>
<tr>
<td>SBC–Seeberg</td>
<td>31.472</td>
<td>46.372</td>
<td>61.108</td>
<td>22.672</td>
</tr>
<tr>
<td>SKC–Skalná</td>
<td>30.484</td>
<td>45.376</td>
<td>60.140</td>
<td>21.636</td>
</tr>
<tr>
<td>TRC–Trojmezí</td>
<td>32.432</td>
<td>47.352</td>
<td>62.072</td>
<td></td>
</tr>
<tr>
<td>VIEL–Viel</td>
<td>32.672</td>
<td>47.584</td>
<td>62.312</td>
<td></td>
</tr>
<tr>
<td>ZHC–Zelená Hora</td>
<td>32.132</td>
<td>47.036</td>
<td>61.768</td>
<td></td>
</tr>
</tbody>
</table>
Hypocentres

- For each event, the maximum σ_{P3}^{max} of the nonnormalized 3–D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, and arrival–time misfit y:

<table>
<thead>
<tr>
<th>event</th>
<th>σ_{P3}^{max}</th>
<th>$<y>=N-4$</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.569</td>
<td>6</td>
<td>1.126</td>
</tr>
<tr>
<td>2</td>
<td>0.686</td>
<td>6</td>
<td>0.754</td>
</tr>
<tr>
<td>3</td>
<td>0.605</td>
<td>6</td>
<td>1.007</td>
</tr>
<tr>
<td>4</td>
<td>0.908</td>
<td>2</td>
<td>0.193</td>
</tr>
</tbody>
</table>

- Arrival-time missfit y is considerably smaller than its estimated mean value $<y>$.
- We observed much greater uncertainty of the hypocentral position of event 4 determined just from six P–wave arrival times.
- We observed that the location of the maximum value of the nonnormalized 3–D marginal a posteriori density function may considerably differ from the mean hypocentre location given by the nonnormalized 3–D marginal a posteriori density function.
- Moreover, the mean hypocentre location often considerably depends on the dimensions of the location grid.
Seismically active region of Western Bohemia. The thick line rectangle limits the location grid. Four approximately elliptical curves limit the regions where the probability density functions of the four epicentres exceed 10% of the respective maximum values.
The nonzero values of the nonnormalized 3–D marginal a posteriori density function of event 1 determined using 10 P–wave arrival times. The values range from yellow through green, cyan, blue and magenta to the maximum value displayed in red.
The nonzero values of the nonnormalized 3–D marginal a posteriori density function of event 4 determined using 6 P–wave arrival times. The values range from yellow through green, cyan, blue and magenta to the maximum value displayed in red.
The locations of the centres of small cubes which are displayed as yardsticks (small red spheres), together with their projections onto the sides of the grid used for the nonlinear hypocentre determination. The displayed dimensions of the grid used for the nonlinear hypocentre determination are $30 \text{ km} \times 30 \text{ km} \times 17 \text{ km}$.
Nonnormalized 3–D marginal a posteriori density function of event 1 determined using 10 P–wave arrival times. The zero values are displayed in yellow. The nonzero values range through green, cyan, blue and magenta to the maximum value displayed in red. The undefined values are displayed in gray, and denote the gridpoints at which at least one theoretical travel time is missing. The small cube has the sides of 2 km.
Nonnormalized 3–D marginal a posteriori density function of event 2 determined using 10 P–wave arrival times. The zero values are displayed in yellow. The nonzero values range through green, cyan, blue and magenta to the maximum value displayed in red. The undefined values are displayed in gray, and denote the gridpoints at which at least one theoretical travel time is missing. The small cube has the sides of 2 km.
Nonnormalized 3–D marginal a posteriori density function of event 3 determined using 10 P–wave arrival times. The zero values are displayed in yellow. The nonzero values range through green, cyan, blue and magenta to the maximum value displayed in red. The undefined values are displayed in gray, and denote the gridpoints at which at least one theoretical travel time is missing. The small cube has the sides of 2 km.
Nonnormalized 3–D marginal a posteriori density function of event 4 determined using 6 P–wave arrival times. The zero values are displayed in yellow. The nonzero values range through green, cyan, blue and magenta to the maximum value displayed in red. The undefined values are displayed in gray, and denote the gridpoints at which at least one theoretical travel time is missing. The small cube has the sides of 2 km.
The detail of the interpolated discretized nonnormalized 3–D marginal a posteriori density function of **event 1**, displaying the hypocentral region. The cube has the sides of 2 km.
The detail of the interpolated discretized nonnormalized 3–D marginal a posteriori density function of **event 2**, displaying the hypocentral region. The cube has the sides of 2 km.
The detail of the interpolated discretized nonnormalized 3–D marginal a posteriori density function of event 3, displaying the hypocentral region. The cube has the sides of 2 km.
The detail of the interpolated discretized nonnormalized 3-D marginal a posteriori density function of **event 4**, displaying the hypocentral region. The cube has the sides of 2 km.
Numerical example 2

- microseismic monitoring of natural events, 33 events registered
- 15 stations, but each event was registered only on some of the stations (3 to 9 stations)
- simple 1-D layered velocity model consisting of 4 layers
- no information about the velocity model uncertainty

- we assumed power-law model covariance functions, used the value of Hurst exponent from Western Bohemia
- estimated separately P-wave and S-wave model inaccuracy, and then calculated the a posteriori density function using all the arrivals (as will be described on next two slides)
The minimum arrival-time residuals carry information pertinent to the accuracy of the velocity model (Klimeš 1996). Theoretically, the mean arrival-time misfit $<y>$ should equal the number of arrival times N minus 4, $<y> = N - 4$. Calculate arrival-time misfit y from the maximum of the nonnormalized marginal a posteriori density function.

Approximate matrix Θ by diagonal matrix Θ_{kk}, introduce standard deviation of theoretical times σ^2 so that $\Theta_{kk} = \Theta_{0kk} \sigma^2$.

Uncertainty of the velocity model described by model covariance function.

Nonnormalized 3-D marginal a posteriori density function.

Geometrical travel-time covariance matrix Θ.

Estimation of the uncertainty of the velocity model.

Update model covariance function.
Numerical example 2

Iterative estimation of the model covariance function:

if we have sufficiently numerous set of events with sufficiently large numbers of arrivals:

step1:
- estimate uncertainty of the velocity model by choosing a value of σ
- calculate the a posteriori density function
- calculate arrival-time misfits y for all the events and calculate average \bar{y}
- compare with the average value of $N-4$, update σ
- continue until we find σ for which $y \sim N-4$
Numerical example 2

Iterative estimation of the model covariance function:

if we have sufficiently numerous set of events with sufficiently large numbers of arrivals:

step 1:
- estimate uncertainty of the velocity model by choosing a value of σ
- calculate the a posteriori density function
- calculate arrival-time misfits y for all the events and calculate average \bar{y}
- compare with the average value of $\sqrt{N-4}$, update σ
- continue until we find σ for which $\bar{y} \sim \sqrt{N-4}$

step 2:
- perform step 1 using P-wave arrivals to find σ_p
- perform step 1 using S-wave arrivals to find σ_s
- check whether the location with both P and S arrivals provides reasonable \bar{y}_{S+P} so that $\bar{y}_{S+P} \sim \sqrt{N_s+N_p-4}$
<table>
<thead>
<tr>
<th>Event</th>
<th>N_P</th>
<th>N_S</th>
<th>y_P</th>
<th>y_S</th>
<th>y_{P+S}</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>8</td>
<td>7</td>
<td>2.693</td>
<td>1.471</td>
<td>6.656</td>
</tr>
<tr>
<td>02</td>
<td>9</td>
<td>7</td>
<td>4.631</td>
<td>2.776</td>
<td>11.189</td>
</tr>
<tr>
<td>03</td>
<td>8</td>
<td>7</td>
<td>3.172</td>
<td>1.823</td>
<td>7.673</td>
</tr>
<tr>
<td>04</td>
<td>8</td>
<td>7</td>
<td>3.527</td>
<td>2.082</td>
<td>8.486</td>
</tr>
<tr>
<td>05</td>
<td>8</td>
<td>6</td>
<td>2.452</td>
<td>1.590</td>
<td>5.636</td>
</tr>
<tr>
<td>06</td>
<td>8</td>
<td>7</td>
<td>2.955</td>
<td>1.662</td>
<td>7.038</td>
</tr>
<tr>
<td>07</td>
<td>8</td>
<td>7</td>
<td>3.767</td>
<td>2.167</td>
<td>9.060</td>
</tr>
<tr>
<td>08</td>
<td>8</td>
<td>7</td>
<td>3.186</td>
<td>1.809</td>
<td>7.601</td>
</tr>
<tr>
<td>09</td>
<td>9</td>
<td>7</td>
<td>4.360</td>
<td>1.580</td>
<td>9.181</td>
</tr>
<tr>
<td>10</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>7</td>
<td>3.000</td>
<td>2.969</td>
<td>8.833</td>
</tr>
<tr>
<td>12</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>7</td>
<td>7.124</td>
<td>3.752</td>
<td>21.344</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>8</td>
<td>6.625</td>
<td>4.533</td>
<td>25.573</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>9</td>
<td>5.674</td>
<td>8.439</td>
<td>16.794</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>9</td>
<td>5.062</td>
<td>6.335</td>
<td>13.235</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>7</td>
<td>10.407</td>
<td>1.342</td>
<td>17.272</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>9</td>
<td>4.211</td>
<td>5.522</td>
<td>12.666</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>8</td>
<td>3.830</td>
<td>3.445</td>
<td>8.691</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>8</td>
<td>2.756</td>
<td>2.846</td>
<td>6.656</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>7</td>
<td>3.893</td>
<td>1.741</td>
<td>6.970</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>8</td>
<td>3.154</td>
<td>2.140</td>
<td>6.200</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>9</td>
<td>3.869</td>
<td>3.084</td>
<td>8.964</td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>8</td>
<td>6.564</td>
<td>6.355</td>
<td>15.421</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>9</td>
<td>10.732</td>
<td>12.631</td>
<td>25.050</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>8</td>
<td>5.837</td>
<td>8.220</td>
<td>18.836</td>
</tr>
<tr>
<td>27</td>
<td>9</td>
<td>9</td>
<td>5.518</td>
<td>8.105</td>
<td>14.547</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
<td>8</td>
<td>3.916</td>
<td>1.932</td>
<td>7.890</td>
</tr>
<tr>
<td>29</td>
<td>(5)</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>8</td>
<td>3.675</td>
<td>4.818</td>
<td>12.946</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>7</td>
<td>3.591</td>
<td>3.988</td>
<td>11.129</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>6</td>
<td>5.314</td>
<td>1.011</td>
<td>7.535</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>7</td>
<td>1.869</td>
<td>3.084</td>
<td>7.751</td>
</tr>
</tbody>
</table>

Average 8.5 7.6 4.579 3.775 11.561
Numerical example 2 - results

- although we used the incorrect P-wave and S-wave geometrical travel time covariance matrices restricted just to diagonal elements, the behavior of the nonlinear hypocentre determination is reasonable – the average arrival-time misfit determined from both the P-wave and S-wave arrivals behaves in the same way it should behave for the correct geometrical travel-time covariance matrices
9 P-wave arrivals

9 S-wave arrivals
9 P-wave arrivals + 9 S-wave arrivals

<table>
<thead>
<tr>
<th>bottom section</th>
<th>horizontal sections of the resulting probability density function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yellow = zero probability</td>
</tr>
<tr>
<td></td>
<td>blue = maximum prob.</td>
</tr>
</tbody>
</table>

9 P-wave arrivals + 9 S-wave arrivals
Numerical example 2 - results

- although we used the incorrect P-wave and S-wave geometrical travel time covariance matrices restricted just to diagonal elements, the behavior of the nonlinear hypocentre determination is reasonable – the average arrival-time misfit determined from both the P-wave and S-wave arrivals behaves in the same way it should behave for the correct geometrical travel-time covariance matrices

- when we use just P-wave or just S-wave arrival times, the depth of locations is uncertain for approximately 75% of events (including events with 9 arrivals)
No. of arrivals:

shallow
9+9
9+9 (more arrivals)
9+7

middle
9+9
8+6
8+7 (less arrivals)
4+4

deep
No. of arrivals:

- **shallow**
 - 9+9
 - 9+9 (more arrivals)
 - 9+7

- **middle**
 - 8+6
 - 8+7 (less arrivals)
 - 4+4

- **deep**
Numerical example 2 - results

- although we used the incorrect P-wave and S-wave geometrical travel time covariance matrices restricted just to diagonal elements, the behavior of the nonlinear hypocentre determination is reasonable – the average arrival-time misfit determined from both the P-wave and S-wave arrivals behaves in the same way it should behave for the correct geometrical travel-time covariance matrices

- when we use just P-wave or just S-wave arrival times, the depth of locations is uncertain for approximately 75% of events (including events with 9 arrivals)

- when we use both P-wave and S-wave arrivals, we observe that the uncertainty of the hypocentral location increases with increasing depth and decreasing number of arrivals
Conclusions

We considered the robust nonlinear approach to hypocentre determination proposed by Tarantola & Valette (1982), consisting in direct evaluation of the nonnormalized 3–D marginal a posteriori density function which describes the relative probability of the seismic hypocentre, and proposed the corresponding numerical algorithm.

The nonnormalized 3–D marginal a posteriori density function allows for testing the model covariance function describing the uncertainty of the velocity model.

If we were able to use the whole geometrical travel-time covariance matrix, we could estimate the uncertainty of the velocity model.

Acknowledgments

The research has been supported by the Grant Agency of the Czech Republic under contract P210/10/0736, by the Ministry of Education of the Czech Republic within research projects MSM0021620860 and CzechGeo/EPOS LM2010008, and by the members of the consortium “Seismic Waves in Complex 3-D Structures".

http://sw3d.cz
References

