Approximate travel times of waves propagating in laterally varying layered anisotropic media

Ivan Pšenčík1 and Véronique Farra2

1) Institute of Geophysics, Acad. Sci. Praha, Czech Republic

2) Institut de Physique du Globe, Paris, France

14th IWSA, Perth 2010

Tuesday, April 13, 2010
Outline
Outline

Introduction
Outline

Introduction

First-order common S-wave ray tracing
Outline

Introduction
First-order common S-wave ray tracing
Approximate S-wave traveltime formulae
Outline

Introduction
First-order common S-wave ray tracing
Approximate S-wave traveltime formulae
Transformation of first-order slowness vectors at an interface (Snell’s law)
Outline

Introduction
First-order common S-wave ray tracing
Approximate S-wave traveltime formulae
Transformation of first-order slowness vectors at an interface (Snell’s law)
Numerical examples
Outline

Introduction

First-order common S-wave ray tracing

Approximate S-wave traveltime formulae

Transformation of first-order slowness vectors at an interface (Snell’s law)

Numerical examples

Conclusions
Introduction

traveltimes important in migration and tomography
Introduction

current times important in migration and tomography

standard "anisotropic" ray tracers for S waves
Introduction

traveltimes important in migration and tomography

standard "anisotropic" ray tracers for S waves
- break down in weakly anisotropic media
 and in vicinities of singularities
Introduction

traveltimes important in migration and tomography

standard ”anisotropic” ray tracers for S waves
- break down in weakly anisotropic media
 and in vicinities of singularities
- do not work in isotropic media
Introduction

traveltimes important in migration and tomography

standard "anisotropic" ray tracers for S waves
 - break down in weakly anisotropic media
 and in vicinities of singularities
 - do not work in isotropic media
 - generate number of multiple reflections,
 which may exceed acceptable limit
Introduction

Solution: use of common S-wave ray concept

(Bakker, 2002; Klimeš, 2006; Farra & Pšenčík, 2008)
Introduction

Solution: use of common S-wave ray concept
(Bakker, 2002; Klimeš, 2006; Farra & Pšenčík, 2008)

- common ray - artificial trajectory approximating rays of S1 and S2 waves
Introduction

Solution: use of common S-wave ray concept
(Bakker, 2002; Klimeš, 2006; Farra & Pšenčík, 2008)

- common ray - artificial trajectory approximating rays of S1 and S2 waves

- traveltimes of S1 and S2 waves evaluated by quadratures along the common ray
Introduction

Solution: use of common S-wave ray concept
(Bakker, 2002; Klimeš, 2006; Farra & Pšenčík, 2008)

- common ray - artificial trajectory approximating rays of S1 and S2 waves
- traveltimes of S1 and S2 waves evaluated by quadratures along the common ray
- at interfaces, slowness vectors of generated waves determined by solving 4th-degree polynomial equation
First-order common S-wave ray tracing

\(\frac{dx_i}{d\tau} = \frac{1}{2} \frac{\partial G^{[M]}}{\partial p_i}, \quad \frac{dp_i}{d\tau} = -\frac{1}{2} \frac{\partial G^{[M]}}{\partial x_i} \)

- \(x_i \) - coordinates of the first-order ray \(\Omega \)
- \(p_i \) - components of the first-order slowness vector \(\mathbf{p} \)
- \(\tau \) - first-order traveltime

\(G^{[M]}(x, p) \) - S-wave first-order mean eigenvalue

\[
G^{[M]}(x, p) = \frac{1}{2} [G_{S1}^{(1)}(x, p) + G_{S2}^{(1)}(x, p)]
\]

- \(G_{SI}^{(1)}(x, p) \) - S-wave first-order eigenvalues of Christoffel matrix \(\Gamma \)

Eikonal equation: \(G^{[M]}(x, p) = 1 \)
Approximate S-wave traveltime formulae

\[\tau_{S1,S2}(\tau, \tau_0) = \tau^{[M]}(\tau, \tau_0) + \Delta \tau^{[M]}(\tau, \tau_0) + \Delta \tau_{S1,S2}(\tau, \tau_0) \]

\[\tau^{[M]}(\tau, \tau_0) \quad \text{- first-order traveltime between } \tau_0 \text{ and } \tau \text{ on common ray} \]

\[\Delta \tau^{[M]}(\tau, \tau_0) \quad \text{”averaging” correction of first-order traveltime} \]

\[\Delta \tau^{[M]} = \frac{1}{4} \int_{\tau_0}^{\tau} \left(B_{13}^2 + B_{23}^2 \right) / (B_{33} - 1) d\tau \]

\[\Delta \tau_{S1,S2}(\tau, \tau_0) \quad \text{”separation” traveltime correction} \]

\[\Delta \tau_{S1,S2} = \mp \frac{1}{4} \int_{\tau_0}^{\tau} \sqrt{(M_{11} - M_{22})^2 + 4M_{12}^2} d\tau \]
Approximate S-wave traveltime formulae

\[B_{mn} = B_{mn}(\mathbf{x}, \mathbf{p}) = \Gamma_{ik}(\mathbf{x}, \mathbf{p})e_{i}^{[m]}(\mathbf{x})e_{k}^{[n]}(\mathbf{x}) \]

\(\Gamma_{ik} \) - elements of Christoffel matrix \(\mathbf{\Gamma} \)

\(e^{[m]} \) - triplet of orthonormal vectors

\[e^{[3]} = c^{[M]}\mathbf{p}, \quad e^{[1]}, e^{[2]} \text{ arbitrarily in the plane } \perp e^{[3]} \]

\(c^{[M]} \) - common S-wave phase velocity

\[M_{MN} = M_{MN}(\mathbf{x}, \mathbf{p}) = B_{MN} - B_{M3}B_{N3}/(B_{33} - 1) \]
Transformation of first-order slowness vectors at an interface (Snell’s law)

\[p_i^G = p_i - (p_k N_k) N_i + \xi^G N_i \]

- \(p \) - first-order common S-wave slowness vector of incident wave
- \(p^G \) - first-order common S-wave slowness vector of generated wave
- \(N \) - normal to the interface, \(\xi^G = p_k^G N_k \)

\[p_i^G - (p_k^G N_k) N_i = p_i - (p_k N_k) N_i \] - Snell’s law
Transformation of first-order slownessness vectors at an interface (Snell’s law)

\[p_i^G = p_i - (p_k N_k) N_i + \xi N_i \]

\[G^{[\mathcal{M}]}(x, p^G) = 1 \quad \text{- eikonal equation} \]

\[G^{[\mathcal{M}]}(\xi) = 1 \quad \text{- polynomial equation of 4th degree for } \xi \]

Iterative solution (Dehghan et al., 2007)

\[\xi^{\{j\}} = \xi^{\{j-1\}} - \left[G^{[\mathcal{M}]}(p_{m}^{\{j-1\}}) - 1 \right] / \left[N_k \frac{\partial G^{[\mathcal{M}]}(p_{m}^{\{j-1\}})}{\partial p_k} \right] \]

\[\xi^{\{0\}} \quad \text{- in reference isotropic medium} \]
Numerical examples

VSP CONFIGURATION

1.0 km

1.0 km
Numerical examples (Klimeš & Bulant, 2004)

HTI rotated by 45 degrees

QI (ANI 3%, SEPAR 1-4%)
Numerical examples

![Graph showing the relationship between S1 and S2 waves with depth (km)].

QI

Rel tt dif. (%) vs Depth (km)

S1 AND S2 WAVES
Numerical examples (Klimeš & Bulant, 2004)

HTI rotated by 45 degrees

QI4 (ANI 6%, SEPAR 11-13%)
Numerical examples

\begin{figure}
\centering
\begin{tikzpicture}
\begin{axis}[
 title={Q14},
 xlabel={Depth (km)},
 ylabel={Relative diff. (\%)},
 xmin=0, xmax=0.6,
 ymin=-0.8, ymax=0.4,
 xtick={0,0.2,0.4,0.6},
 ytick={-0.8,-0.4,0,0.4},
 x tick label style={align=center},
 y tick label style={align=center},
]
\addplot[blue,mark=+] coordinates {
 (0,0.4)
 (0.2,0.3)
 (0.4,0.2)
 (0.6,0.1)
};
\addplot[red,mark=+] coordinates {
 (0,0)
 (0.2,-0.1)
 (0.4,-0.2)
 (0.6,-0.3)
};
\end{axis}
\end{tikzpicture}
\end{figure}

S1 AND S2 WAVES
Numerical examples (Shearer & Chapman, 1989)

VTI: MODEL SC1 (ANI 11%, SEPAR 0-11%)

![Graph showing phase velocity vs phase angle for SV and SH waves.](image)
Numerical examples

![Graph showing travel time vs. depth]

SC1 - HOM., EXACT,
Numerical examples

SC1 - HOM., EXACT, APPR.
Numerical examples
Numerical examples

SCG1 - INHOM., EXACT, APPR.
Numerical examples (Shearer & Chapman, 1989)

VTI: MODEL SC4 (ANI 30%, SEPAR 0-30%)
Numerical examples
Numerical examples
Conclusions

- applicable to S waves in inhomogeneous isotropic, weakly anisotropic and moderately anisotropic media
- in isotropic media exact, in anisotropic media approximate
- single common S-wave ray necessary for computation of traveltimes of S_1 and S_2 waves
- common S-wave ray tracing stable, does not collapse anywhere
- computer time savings in computing traveltimes of reflected/transmitted waves
- performs better in inhomogeneous media; smoothes loops in traveltime curves
Seismic Waves in Complex 3-D Structures